Summary of findings from toxicological report and suggested action levels; public health perspective; critical data needs

November, 2012

Regina Linville, Ph.D.

Office of Environmental Health Hazard Assessment
California Environmental Protection Agency
TOXICOLOGICAL SUMMARY AND SUGGESTED ACTION LEVELS TO REDUCE POTENTIAL ADVERSE HEALTH EFFECTS OF SIX CYANOTOXINS

May 2012

Ned Butler, Ph.D.
Regina Linville, Ph.D.

Office of Environmental Health Hazard Assessment
California Environmental Protection Agency
Cyanotoxins Reviewed*

- **Microcystins** –LR (–RR, –YR and –LA)
 - **Liver toxin:** causes liver damage/failure.
 - Human cases: 76 mortalities from i.v. exposure
 - Animal cases: high mortality from oral exposure
 - MC-LR is a possible tumor promoter in humans
 - Stable in the environment
 - **Produced by:** cyanobacterial species of several genera, e.g., *Microcystis*, *Anabaena*, and *Planktothrix* (*Oscillatoria*)

Literature through 2008 reviewed with few exceptions
Cyanotoxins Reviewed*

- **Anatoxin-a**

- **Neurotoxin**: causes convolutions and rapid death by respiratory paralysis.
 - Human cases: not documented
 - Animal cases: high mortality from oral exposure
 - Relatively stable in the environment

- **Produced by**: cyanobacterial species of several genera, e.g., *Anabaena*, *Planktothrix (Oscillatoria)*, *Aphanizomenon*

Literature through 2008 reviewed with few exceptions
Cyanotoxins Reviewed*

• **Cylindrospermopsin**

 • **Liver and kidney toxin:** causes liver and kidney damage/failure.
 • Human cases: poisonings from drinking water
 • Animal cases: mortality from oral exposure
 • Stable in the environment

 • **Produced by:** cyanobacterial species of several genera, e.g., *Cylindrospermopsis, Aphanizomenon, Rhaphidiopsis, Anabaena*

Literature through 2008 reviewed with few exceptions
Overview of the Process

Reference Dose
Maximum recommended dose

Exposure
Amount of media consumed (e.g., water)

Action Level
Health-protective chemical concentration in media (e.g., mg/L)
Reference Dose

The Reference Dose (RfD): level of exposure over a given time period that is not expected to cause any adverse effects

1. Identify the best dose-response study
2. Identify a dose that effects very few test animals
3. Translate that animal dose to humans and domestic animals using Uncertainty Factors
Uncertainty Factors

RfD = “No Effect Level” ÷ UF

Human cumulative UF of 1000: “mouse to man” (10); sensitive people (10); incomplete data (10)

Domestic Animal UF of 100 (acute) to 10 (subchronic): interspecies extrapolation; incomplete data; severity of endpoint (acute)

Domestic Animal exposure UF of 3 was also applied due to the preferential consumption of cyanobacteria. In this case, estimated exposure was multiplied by 3
Exposure Scenarios

- Humans swimming
 - *Does not apply to drinking water*
- Human consumption of sport fish and shellfish
- Dogs & cattle drinking from natural/impounded waters
- Dogs & cattle consumption of crusts or mats
Action Levels

Health-protective chemical concentrations in the exposure media that should result in chemical intake below or equal to the RfDs.

• Algebraic relationship between concentration in exposure media and chemical dose, for example:

\[
\text{Rec. water conc. (mg/L) } \times \text{ RfD (mg/kg } \cdot \text{d) = Action level (mg/L)}
\]

*Set equal to 1 to solve

• Risk management tool; Not criteria or regulation
Action Levels for Humans Subchronic Exposure

<table>
<thead>
<tr>
<th></th>
<th>MCs1</th>
<th>ANA-a</th>
<th>CYN</th>
<th>Media (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreational Uses2</td>
<td>0.8</td>
<td>90</td>
<td>4</td>
<td>Water (µg/L)</td>
</tr>
<tr>
<td>Sport Fish Consumption</td>
<td>10</td>
<td>5000</td>
<td>70</td>
<td>Fish (ng/g) ww3</td>
</tr>
</tbody>
</table>

1. Includes microcystins LA, LR, RR, and YR
2. Not for drinking water
3. Wet weight or fresh weight
Action Levels for Dogs & Cattle Subchronic and **Acute** Exposure

<table>
<thead>
<tr>
<th></th>
<th>MCs<sup>1</sup></th>
<th>ANA-a</th>
<th>CYN</th>
<th>Media (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs Water Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs Water Intake</td>
<td>2</td>
<td>100</td>
<td>10</td>
<td>Water (µg/L)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Cattle Water Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle Water Intake</td>
<td>0.9</td>
<td>40</td>
<td>5</td>
<td>Water (µg/L)</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>40</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Dogs Crusts & Mats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs Crusts & Mats</td>
<td>0.01</td>
<td>0.3</td>
<td>0.04</td>
<td>Crusts/Mats (mg/kg) <sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Cattle Crusts & Mats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle Crusts & Mats</td>
<td>0.1</td>
<td>3</td>
<td>0.4</td>
<td>Crusts/Mats (mg/kg) <sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

¹ Includes MCs LA, LR, RR, and YR; ² Dry sample weight
Limiting Subchronic Action Levels for Recreational Waters

<table>
<thead>
<tr>
<th></th>
<th>MCs(^1)</th>
<th>ANA-a</th>
<th>CYN</th>
<th>Media (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Swimming</td>
<td>0.8</td>
<td>90</td>
<td>4</td>
<td>Water (µg/L)</td>
</tr>
<tr>
<td>Dog Drinking</td>
<td>2</td>
<td>100</td>
<td>10</td>
<td>Water (µg/L)</td>
</tr>
<tr>
<td>Cattle Drinking</td>
<td>0.9</td>
<td>40</td>
<td>5</td>
<td>Water (µg/L)</td>
</tr>
</tbody>
</table>

\(^1\) Includes microcystins LA, LR, RR, and YR
Public Health Perspective

• Who can the public contact for clear answers?

• Effective risk communication

• Protection of animals (highest exposure group)

• Address practice of pumping bloom water for use in farming and ranching

• Non-contact water recreational scenarios

• Drinking water

• Educate doctors/vets of signs and symptoms
Critical Data Needs

- Toxicological data on other cyanotoxins, e.g., saxitoxin, anatoxin-a(s), MC analogs, lyngbyatoxin
- Exposure data for non-contact water recreation
- MC concentrations in sportfish and shellfish
- Measurement standards for cyanotoxins
- Database of California poisonings (dogs, livestock, wildlife)
- Effects on aquatic species and wildlife