Developing a comprehensive watershed-wide monitoring program for surface waters

Michael Lyons Staff Environmental Scientist Watershed Regulatory Program

September 29, 2010

# Monitoring Program Design 101



Elements to consider:

- Objectives
- Station locations
- Indicators
- Assessment thresholds
- Data analysis

# About Me

- 23 years LA Regional Board
- SWAMP coordinator
- NPDES permitting
- Marine Biologist









# Why Monitor ?

- Compliance with permit limits
- TMDL requirements
- BMP effectiveness
- Protection of beneficial uses
  Condition of resource



#### Where to Monitor ?



- Bays & estuaries
- Lakes & reservoirs
- Rivers & streams
- Wetlands
- Groundwater

#### FOCUS ON FRESHWATER STREAMS



#### FOCUS ON FRESHWATER STREAMS







## **Starting Point**



2005

- Most monitoring in lower watershed
- No monitoring in upper watershed
- LA County San District's NPDES monitoring
  LA County DPW stormwater monitoring
  SWAMP monitoring
  Other stakeholder monitoring

#### Integrated Monitoring Plan Meet with Stakeholders

- Los Angeles Reg Bd
- USEPA
- So Cal Coastal Water Research Project
- Santa Ana Reg Bd
- LA County San
- LA/SG River Watershed Council
- LA Co Dept Public Works
  LA Co Dept Water & Power
  AES

- US Forest Service
- City of Downey
- Friends of SG River
- Orange Co Stormwater Prog
- Rivers & Mountains Conserv
- SG Mountains Reg Conserv
- US Army Corps of Engineers

#### DEFINE MONITORING OBJECTIVES



1. What is the overall condition of streams in the watershed? 2. Are local fish safe to eat? 3. Is it safe to swim? **4.** Are conditions getting better or worse in the watershed? **5.** Are receiving waters near

Are receiving waters near discharges meeting water quality objectives?

1. What Is the Overall Condition of Streams in the Watershed ? Targeted sampling Areas of special interest or unique sites Major tributaries High quality habitat Endangered species Known sources of pollution Probabilistic sampling - Overall condition Unbiased monitoring locations - Percentage of stream affected

# **Targeted Sampling**



 Good for tracking conditions at specific sites of interest

- Good for trend monitoring
- Poor for determining overall health of watershed

 Number of stations depends (interest vs \$\$)

#### **Probabilistic Sampling**

Good for determining overall health of watershed Good for trend monitoring Poor for tracking conditions at specific sites of interest Number of stations (n = 30)



#### San Gabriel River Watershed

- Targeted sampling @ 12 stations in streams + 4 in estuary
- Randomized sampling @ 30 stations in 2005
- Randomized sampling @ 10 stations per year in 2006, 2007, 2008, 2009, 2010, etc

#### Indicators of Stream Health

Biological community
Habitat condition in the stream
Toxicity (water column or sediment)
Chemical measurements

Nutrients
Metals
Organics

# Biological Community Field Sampling







# Biological Community Bioassessment Monitoring



- Bioassessment monitoring
- EPT taxa = good
  - Ephemeroptera (mayfly)
  - Plecoptera (stonefly)
  - Trichoptera (caddisfly)





## Biological Community Bioassessment Monitoring





- Pollution tolerant
   species = bad
  - Midges (chironomidae)
  - Worms (oligochaeta)
  - Flies (diptera)



## **Toxicity Testing**

- Acute toxicity = mortality
- Chronic toxicity = impaired growth or reproduction
- Toxic (high, moderate, low)
   vs Non-toxic



#### **Chemical Monitoring**

- Nutrients (ammonia, nitrate, phosphate)
  - Comparison to Basin Plan objectives
- Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Ag, Zn)
- Organics (DDTs, PCBs, PAHs, pyrethroid pesticides)
  - Comparison to CTR and/or Basin
     Plan

## San Gabriel River Watershed



Assessment Threshold Biological Community IBI = Index of Biotic Integrity







# Habitat





**Buffer** 



Hydrology

hysical structure



Biotic structure



Score

# Toxicity



|                   | Significan  | t Endpoints | Significant Response by Sub-Region |                   |              |  |  |  |
|-------------------|-------------|-------------|------------------------------------|-------------------|--------------|--|--|--|
|                   | n =         | Sig Tox     | Mainstem                           | Lower Rand        | Upper Rand   |  |  |  |
| 2005 Ceriodaphnia |             |             |                                    |                   |              |  |  |  |
| Survival          | 23          | 1           | 0                                  | 0                 | 1            |  |  |  |
| Reproduction      | 23          | 5           | 0                                  | 2                 | 3            |  |  |  |
| 2006 Ceriodaphnia | - A CENTRAL |             |                                    | it and the second | Star GENERAL |  |  |  |
| Survival          | 10          | 0           | 0                                  | 0                 | 0            |  |  |  |
| Reproduction      | 10          | 0           | 0                                  | 0                 | 0            |  |  |  |
| 2007 Ceriodaphnia |             |             |                                    |                   |              |  |  |  |
| Survival          | 9           | 0           | 0                                  | 0                 | 0            |  |  |  |
| Reproduction      | 9           | 2           | 0                                  | 1                 | 1            |  |  |  |
| 2008 Ceriodaphnia | 1           |             |                                    |                   |              |  |  |  |
| Survival          | 9           | 2           | 0                                  | 1                 | -1           |  |  |  |
| Reproduction      | 9           | 2           | 0                                  | 1                 | 1            |  |  |  |
| 2009 Ceriodaphnia |             |             |                                    |                   |              |  |  |  |
| Survival          | 10          | 0           | 0                                  | 0                 | 0            |  |  |  |
| Reproduction      | 10          | 1           | 0                                  | 1                 | 0            |  |  |  |
| TOTALS            | 122         | 13          | 0                                  | 6                 | 7            |  |  |  |
| %                 |             | 11%         | 0%                                 | 5%                | 6%           |  |  |  |

# **Chemical Monitoring**



Selenium

Zinc



# **Chemical Monitoring**





Nitrate as N





**Total Kjeldahl Nitrogen** 



**Total Phosphorus** 

#### Are Local Fish Safe to Eat ?

- Targeted popular fishing areas
  - La Mirada Lake
  - Puddingstone Reservoir
  - Santa Fe Dam Reservoir
  - San Jose Creek (2 locations)
  - San Gabriel River (2 locations)
  - Estuary (2 locations)
- Sample every 1-3 years

# Are Local Fish Safe to Eat ?

|                        |                       | Large Mouth           |                   |                |         |                         |             |
|------------------------|-----------------------|-----------------------|-------------------|----------------|---------|-------------------------|-------------|
| Mercury (ppb)          | Common Carp           | Bass                  | Catfish           | Striped Mullet | Tilapia | Redear Sunfish          | Bluegill    |
| Lakes                  |                       |                       |                   |                |         | -                       |             |
| La Mirada Lake-06      | A Constitution of the |                       | ND                | the strength   |         | A STATE OF THE OWNER OF |             |
| La Mirada Lake-08      | State of the second   | and the second second | 10                |                |         | Line Lines 1.           | 1. 1. S. 1. |
| Puddingstone Lake 2004 | 54                    | 320                   |                   | A DAMPER       |         |                         |             |
| Puddingstone Lake 2006 |                       | 327                   | - Children and an |                |         |                         |             |
| Puddingstone Lake 2007 | and the second        | 223                   |                   |                |         |                         |             |
| Puddingstone Lake 2008 | and the lot of the    | 160                   | BARRY LINE        |                |         | 10                      | Length 1    |
| Puddingstone Lake 2009 | 20                    | 290                   | 40                |                |         | 20                      | 20          |
| Puddingstone Lake 2009 |                       | 210                   |                   |                |         | 20                      |             |
| Puddingstone Lake 2009 |                       | 40                    |                   |                |         | Contraction of          |             |
| Santa Fe Dam 2006      | 81                    | 448                   |                   |                |         |                         |             |
| Santa Fe Dam 2007      | 162                   |                       |                   |                |         |                         |             |
| <u>Rivers</u>          | 100                   |                       |                   |                |         |                         |             |
| San Jose Creek-06      | 22                    |                       |                   |                |         |                         |             |
| San Jose Creek-07      | 40                    |                       |                   |                | 21      |                         |             |
| SGR at Alondra Blvd-07 |                       |                       |                   |                | ND      |                         |             |
| SGR at Alondra Blvd-08 |                       |                       |                   |                | ND      |                         | 1000        |
| <u>Estuaries</u>       |                       |                       |                   |                |         |                         |             |
| Upper Estuary-06       |                       |                       |                   | ND             |         |                         | -           |
| Upper Estuary-07       | 40                    |                       |                   | ND             |         |                         |             |
| Upper Estuary-08       | 10                    |                       |                   | ND             | 10      |                         | -           |
| Upper Estuary-09       |                       |                       |                   | ND             |         |                         |             |
| Lower Estuary-07       | E SA STAN             |                       |                   |                | ND      |                         | 2           |

#### Is It Safe to Swim?

- Targeted popular recreational areas + sentinel sites
  - Note that "swim" means REC 1 (swimming, wading, water-skiing, skin and scuba diving, surfing, white water activities and fishing)
- 8 popular rec areas + 5 sites above major confluences + 1 estuary site
- E. coli at rec & sentinel sites (weekly May-Sept)
- Total & fecal coliform + enterococcus in estuary (twice a week year-round)

# Is It Safe to Swim?

|                                                                                                                 | -    | G                 | eometric N |      |        |           |     |                |      |
|-----------------------------------------------------------------------------------------------------------------|------|-------------------|------------|------|--------|-----------|-----|----------------|------|
| Sentinel Sites                                                                                                  |      | Мау               | June       | July | August | September |     | le Exceedances |      |
|                                                                                                                 | Year | S                 |            |      |        |           | n = | No.            | %    |
|                                                                                                                 |      | Contractor of the |            |      |        |           | _   |                |      |
| San Gabriel (R9W)                                                                                               | 2007 | 257               | 181        | 417  | 260    | 239       | 19  | 12             | 63%  |
|                                                                                                                 | 2008 | 58                | 167        | 130  | 71     | 237       | 21  | 9              | 43%  |
| C. C                                                                        | 2009 | 52                | 232        | 102  | 273    | 203       | 24  | 9              | 38%  |
| Covoto Crook (BA1)                                                                                              | 2007 | 444               | 205        | 172  | 350    | 326       | 10  | 12             | 690/ |
| COyole Creek (ICAT)                                                                                             | 2007 | 444               | 303        | 244  | 350    | 320       | 24  | 15             | 420/ |
| and the second second                                                                                           | 2008 | 455               | 290        | 341  | 410    | 357       | 21  | 5              | 45%  |
|                                                                                                                 | 2009 | 270               | 187        | /5   | 14     | 24        | 24  | 5              | 21%  |
| Coyote Creek (Valley View)                                                                                      | 2007 | 130               | 98         | 51   | 77     | 107       | 19  | 5              | 26%  |
| A CONTRACTOR OF | 2008 | 162               | 29         | 29   | 48     | 199       | 21  | 2              | 10%  |
| Sanden allest                                                                                                   | 2009 | 139               | 125        | 168  | 58     | 13        | 24  | 7              | 29%  |
| San Jose Creek (C1)                                                                                             | 2007 | 457               | 4481       | 1224 | 1495   | 929       | 19  | 17             | 89%  |
|                                                                                                                 | 2008 | 1337              | 3797       | 1339 | 4946   | 1228      | 21  | 19             | 90%  |
|                                                                                                                 | 2009 | 10140             | 4827       | 720  | 1477   | 2992      | 24  | 24             | 100% |
| - In the state of the second second                                                                             |      |                   |            |      |        |           |     |                |      |
| Walnut Creek                                                                                                    | 2007 | 2281              | 322        | 378  | 468    | 407       | 16  | 9              | 56%  |
|                                                                                                                 | 2008 | 210               | 29         | 12   | 20     | 21        | 21  | 1              | 5%   |
|                                                                                                                 | 2009 | 171               | 33         | 49   | 51     | 128       | 24  | 8              | 33%  |
| 20.00                                                                                                           |      |                   |            |      |        | Totals    | 317 | 149            | 47%  |

*E. coli* 30 day standard – 126 MPN/100 mL Single sample standard – 235 MPN/100 mL

# Is It Safe to Swim?

| Bacteria Sampling Location       | 5/21/10 | 5/29/10    | 6/1/10    | 6/10/10    | 6/16/10  | 6/26/10 | 6/28/10 | 7/3/10 | 7/6/10 | 7/15/10 | 7/21/10 | 7/26/10 | Exceedances<br>of REC 1 Std. |
|----------------------------------|---------|------------|-----------|------------|----------|---------|---------|--------|--------|---------|---------|---------|------------------------------|
| E. Fork @ Cattle Canyon          | < 10    | < 10       | < 10      | 52         | 31       | 228     | <10     | 135    | <10    | 30      | 75      | 31      | 0                            |
| E. Fork @ Graveyard Canyon       | <10     | <10        | <10       | <10        | <10      | 63      | 41      | <10    | <10    | 350     | 41      | 20      | 1                            |
| N. Fork above W. Fork Confluence | < 10    | 41         | 20        | <10        | <10      | 85      | 185     | 41     | 20     | 144     | 31      | 281     | 1                            |
| Upper Cattle Canyon              | < 10    | < 10       | < 10      | <10        | <10      | <10     | <10     | <10    | <10    | <10     | <10     | <10     | 0                            |
| Upper East Fork                  | < 10    | < 10       | < 10      | 20         | 20       | <10     | 20      | <10    | 20     | <10     | <10     | 109     | 0                            |
| Upper North Fork                 | < 10    | < 10       | 20        | <10        | <10      | <10     | <10     | 41     | <10    | 86      | 31      | <10     | 0                            |
| Upper West Fork                  | < 10    | < 10       | < 10      | <10        | <10      | <10     | <10     | 20     | <10    | <10     | 20      | 41      | 0                            |
| W. Fork above N. Fork Confluence | < 10    | < 10       | < 10      | <10        | 41       | <10     | 20      | 31     | <10    | 121     | <10     | 20      | 0                            |
| Exceedances of REC 1 Std.        | 0       | 0          | 0         | 0          | 0        | 0       | 0       | 0      | 0      | 1       | 0       | 1       |                              |
| Holiday<br>Weekend               |         | WQO for si | ngle samp | le E.coli: | 235 MPN/ | 100mL   |         |        |        |         |         |         |                              |

#### Are Conditions Getting Better or Worse Over Time ?





#### Are Conditions Getting Better or Worse Over Time ?









#### Are Conditions Getting Better or Worse Over Time ?



Ceriodaphnia Reproduction

120



# Are receiving waters near discharges meeting water quality objectives ?

Table 14. Exceedances of water quality objectives for parameters measured at receiving water sites below NPDES discharges from 2005 to 2008.

| Constituent   | Total No<br>Measurements | Below<br>Chronic WQO | %    | Exceeded<br>Chronic WQO | %    | Exceeded<br>Acute WQO | %    |
|---------------|--------------------------|----------------------|------|-------------------------|------|-----------------------|------|
| Ammonia       | 948                      | 917                  | 97%  | 29                      | 3%   | 2                     | 0.2% |
| Diazinon      | 203                      | 184                  | 91%  | 10                      | 5%   | 9                     | 4%   |
| Arsenic       | 228                      | 228                  | 100% | o                       | 0%   | 0                     | 0%   |
| Copper        | 305                      | 304                  | 100% | 1                       | 0.3% | 0                     | 0%   |
| Cadmium       | 189                      | 189                  | 100% | 0                       | 0%   | Ö                     | 0%   |
| Chromium (VI) | 190                      | 190                  | 100% | 0                       | 0%   | 0                     | 0%   |
| Lead          | 294                      | 292                  | 99%  | 2                       | 0.7% | 0                     | 0%   |
| Mercury *     | 279                      | 279                  | 100% | 0                       | 0%   | 0                     | 0%   |
| Nickel        | 234                      | 234                  | 100% | 0                       | 0%   | 0                     | 0%   |
| Selenium      | 247                      | 246                  | 100% | 1                       | 0.4% | N/A                   |      |
| Silver        | 262                      | 262                  | 100% | 0                       | 0%   | N/A                   |      |
| Zinc          | 256                      | 256                  | 100% | 0                       | 0%   | о                     | 0%   |

\* Comparison against human health threshold

#### SAN GABRIEL RIVER WATERSHED PRE- & POST-COLLABORATION



