Slide 1

California's Surface Water Ambient Monitoring Program Quantitation and Reporting Limits 101 January 19, 2011

Presented by:

Beverly H. van Buuren The QA Research Group at Moss Landing Marine Laboratories

Quantitation and Reporting Limits 101

- Definitions of Quantitation Limits
- Surface Water Ambient Monitoring Program Reporting Limits Requirements
- Determining Program/Project Reporting Limits
- Working with a Laboratory and Reporting Limits
- Documents for Communication of Reporting Limits
- Comments on Reporting in the Context of Reporting Limits
- New Developments Stay Tuned to EPA
- Conclusion
- Reporting Limits 102

Outcome

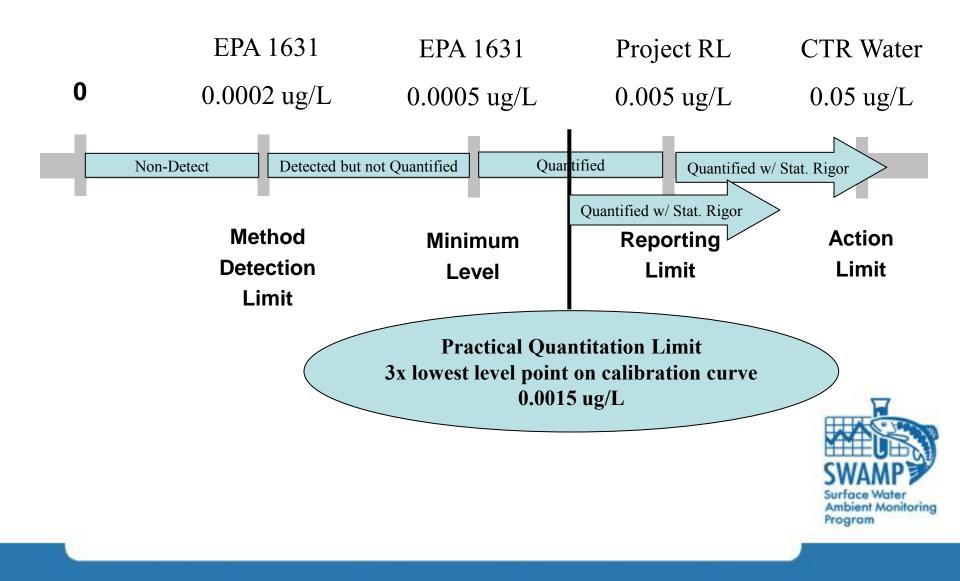
- A general understanding of common quantitation limit terms
- An understanding of the differences between quantitation limits
- The SWAMP requirements for reporting limits and SWAMP resources
- A <u>brief</u> introduction to determining reporting limits
- Tips for ensuring labs can hit reporting limits

Text and References

- There are several slides with a significant amount of text and definitions.
- There are also several slides that show tools and list web site addresses, phone numbers, and email addresses.
- We will not be going over these verbatim; they are included so that you may use the slides later as a reference.

Slide 5

Action Limit

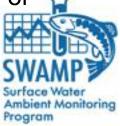

(or Water Quality Standard)

Reporting Limit

Minimum Level

Method Detection Limit

Definitions of Quantitation Limits

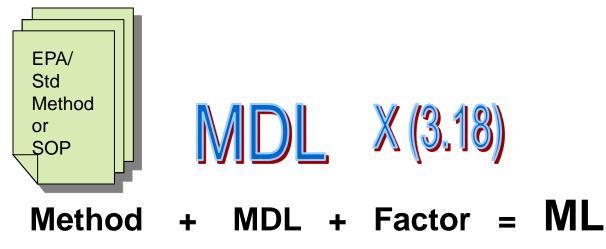

Sample Prep + Analyses + Lab = MDL

- 40 CFR Appendix B to Part 136 Definition and Procedure for the Determination of the Method Detection Limit - Revision 1.11
 - Google: e-CFR title 40 part 136, go to App B

Definition: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. (40 CFR Section136 Appendix B)

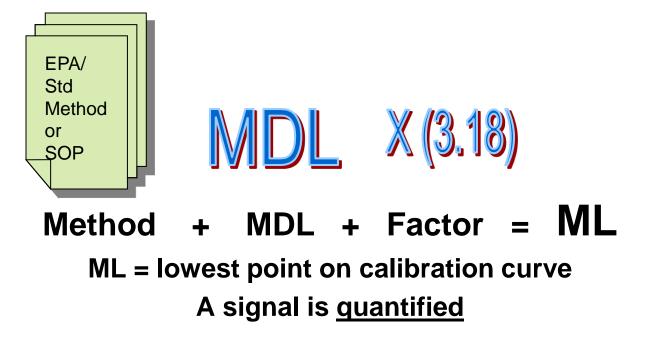
The MDL for an analytical procedure may vary as a function of sample type. The procedure requires a complete, specific, and well defined analytical method. It is essential that all sample processing steps of the analytical method be included in the determination of the method detection limit.

- A laboratory determines its MDLs by analyzing a minimum of seven replicates.
- MDL replicate percent recovery acceptance criterion is defined by the range of the percent mean recovery ± 2 times the percent relative standard deviation (%RSD) found for the seven replicates. If any of the seven replicates fails this acceptance criterion, then the analyst discards all results and performs another set of seven replicates.
- The spiking concentrations used to determine an MDL are between 1 and 10 times the calculated MDL.
- This should be determined annually, or at least verified annually.


Sample Prep + Analyses + Lab = MDL 7 spike replicates MDL = lowest level signal is produced A signal is <u>detected</u>

Minimum Level

ML = lowest point on calibration curve

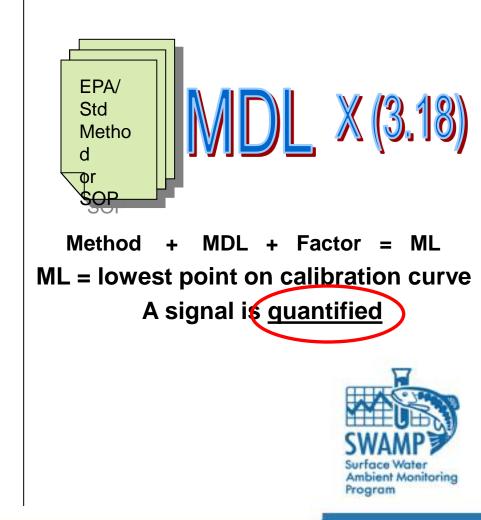


Minimum Level

- US EPA definition.
- The lowest level at which the entire analytical system must give a recognizable signal and acceptable calibration point for the analyte. It is equivalent to the concentration of the lowest calibration standard, assuming that all method-specified sample weights, volumes, and cleanup procedures have been employed.
- The ML is calculated by multiplying the MDL by 3.18 and rounding the result to the number nearest to (1, 2, or 5) x 10n, where n is an integer. (EPA definition)
- Minimum levels are used in some EPA methods.

Minimum Level

Sample Prep + Analyses + Lab = MDL

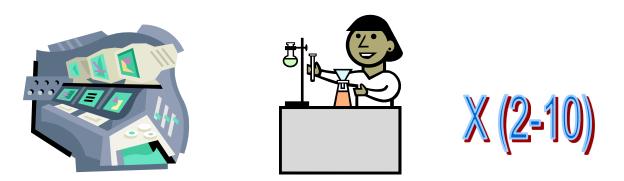

7 spike replicates

MDL = lowest level signal is produced

A signal is detected

LABORATORY

Minimum Level


Slide 17

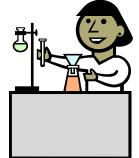
Concentration

Minimum Level

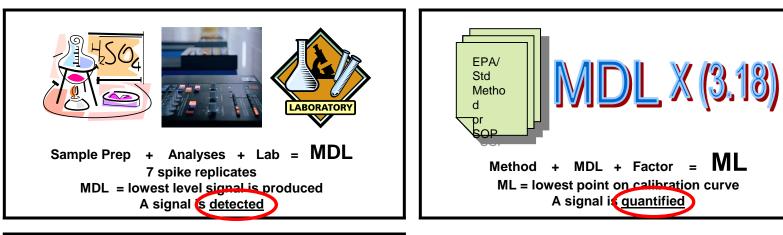
Method Detection Limit

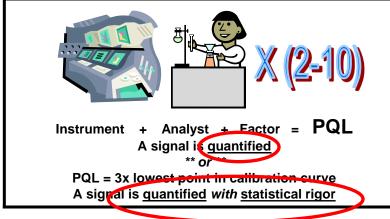
Instrument + Analyst + Factor = PQL ** or **

PQL = 3x lowest point on calibration curve


- Several different definitions.
- A quantity set at two to ten times above the method detection limit (MDL). By raising the MDL by a factor of two to ten, serving as a "safety factor," commercial laboratories hope to quantify the environmental sample concentrations with a degree of certainty.
- The degree of the factor (2-10) is decided by the analytical laboratory depending upon the skill and experience of the analyst, the quality of the instrument, and the nature of the sample objectives.

- The lowest level that can be reliably achieved during routine laboratory operating conditions. The PQL is approximately two to five times the calculated MDL. (Vermont Department of Environmental Conservation)
- The lowest concentration where the 95% confidence interval is within 20% of the true concentration of the sample. The percent uncertainty at the 95% confidence level shall not exceed 20% of the results for concentrations greater than the PQL. (United States Department of Energy)
- 3x the lowest point on the calibration curve (common practice with commercial labs)





Instrument + Analyst + Factor = PQL A signal is <u>quantified</u> ** or **

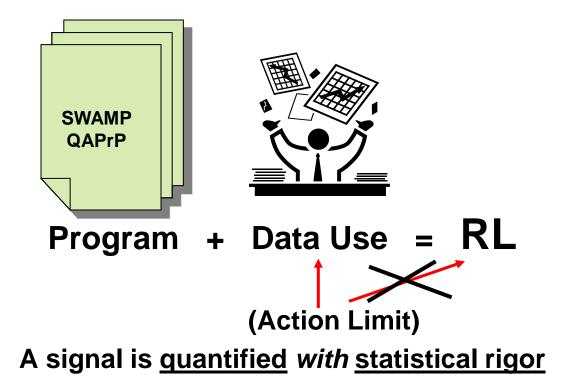
PQL = 3x lowest point on calibration curve A signal is <u>quantified</u> with <u>statistical rigor</u>

- MDL = Method Detection Limit
 Detected
- ML = Minimum Level
 Quantified
- PQL = Practical Quantitation Limit
 Quantified

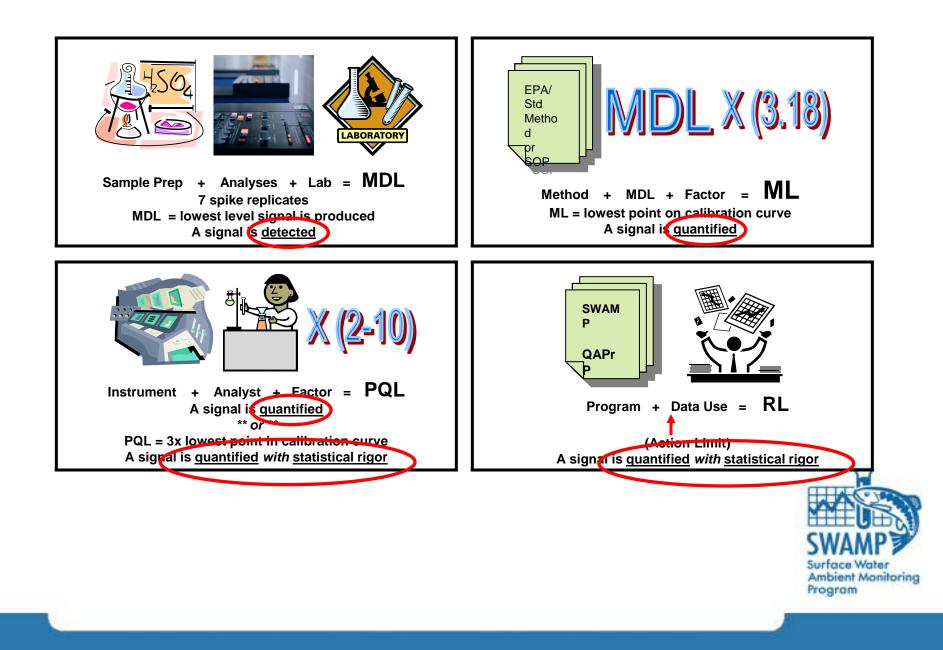
If 3x the lowest point on calibration curve Quantified with Statistical Rigor

Reporting Limit

mbient Monitoring


Program

Reporting Limit


- Several different definitions.
- An instrument-dependent quantity based on the lowest point on the calibration curve. (Massachusetts Department of Environmental Protection)
- A limit imposed upon the reporting laboratory. The RL is usually demanded by the client or regulatory guidelines, and is basically associated with method detection limits (MDLs) or practical quantitation limits (PQLs). (California Regional Water Quality Control Board – Los Angeles Region)

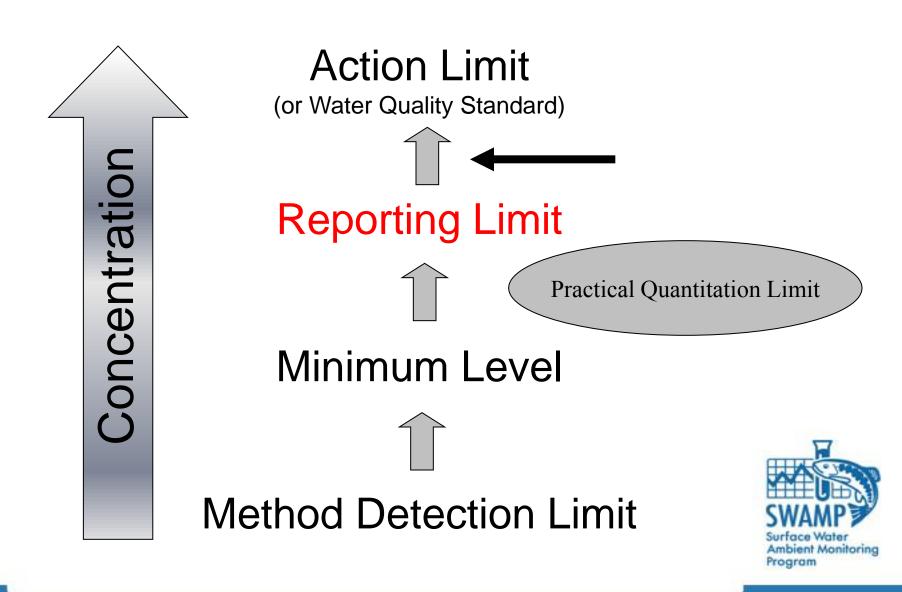
The RL should have statistical rigor in order to be used in reporting

Reporting Limit

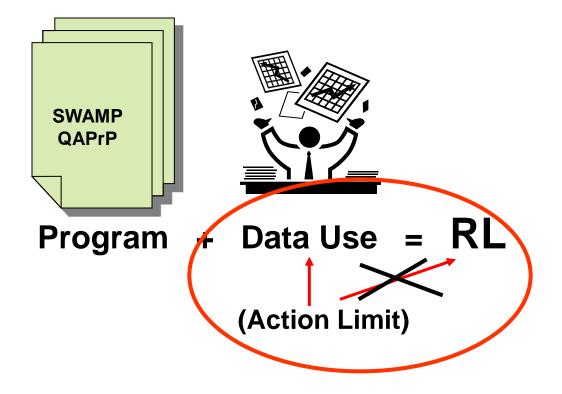
Reporting Limit

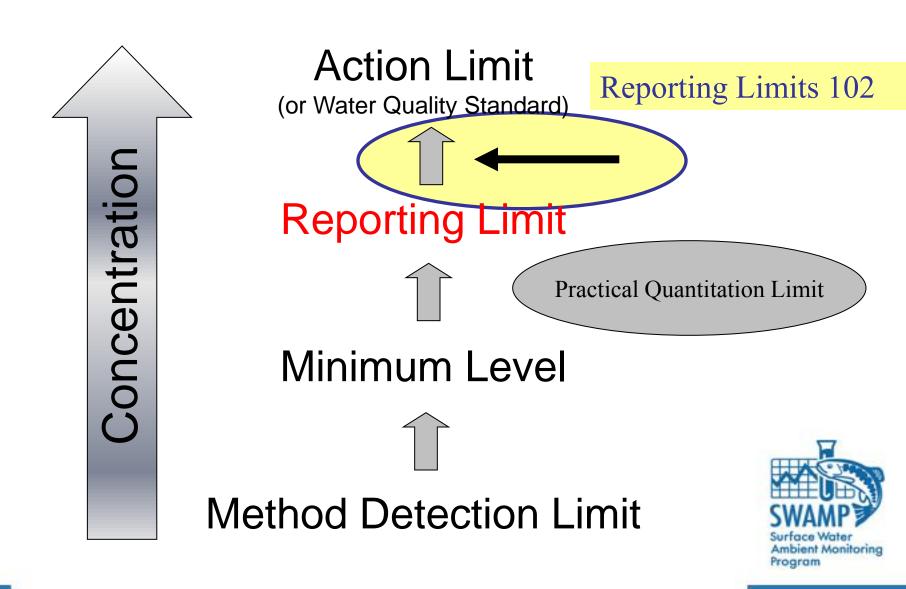
Minimum Level

Method Detection Limit


- MDL = Method Detection Limit
 Detected
- ML = Minimum Level
 Quantified
- PQL = Practical Quantitation Limit
 Quantified

If 3x the lowest point on calibration curve Quantified with Statistical Rigor


RL = Reporting Limit
 Action Limit
 Quantified with Statistical Rigor


Slide 30

Reporting Limit

Definitions of Quantitation Limits

Concentration

Action Limit

(or Water Quality Standard)

Reporting Limit

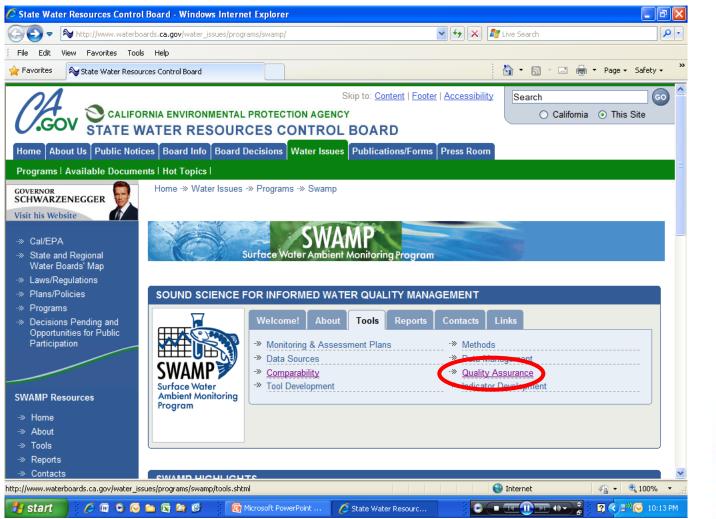
Minimum Level

Method Detection Limit

Surface Water Ambient Monitoring Program Reporting Limit Requirements

SWAMP Reporting Limits

- Target, not required
- Appendix C 2008 SWAMP QA Program Plan
- Currently under revision with a draft of new tables anticipated late 2012



Where Do I Find the SWAMP Requirements?

- SWAMP 2008 QA Program Plan
 - <u>http://www.waterboards.ca.gov/water_issues/programs/swamp/tools.sht</u> <u>ml#qa</u>
 - Google search: SWAMP QAPrP
 - Appendix C: Reporting Limits
- Bioassessment, algae, P-Hab
 - <u>http://swamp.mpsl.mlml.calstate.edu/resources-and-downloads/standard-operating-procedures</u>
 - Google search: SWAMP Bioassessment SOP
- Call/email the SWAMP QA Help Desk
 - 206-525-0491
 - <u>swampqa@mlml.calstate.edu</u>
- Read the SWAMP-Comparability FAQ
 - <u>http://swamp.mpsl.mlml.calstate.edu/faqs</u>

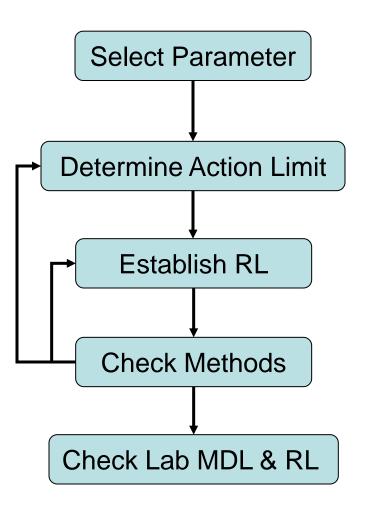
State Board SWAMP Website

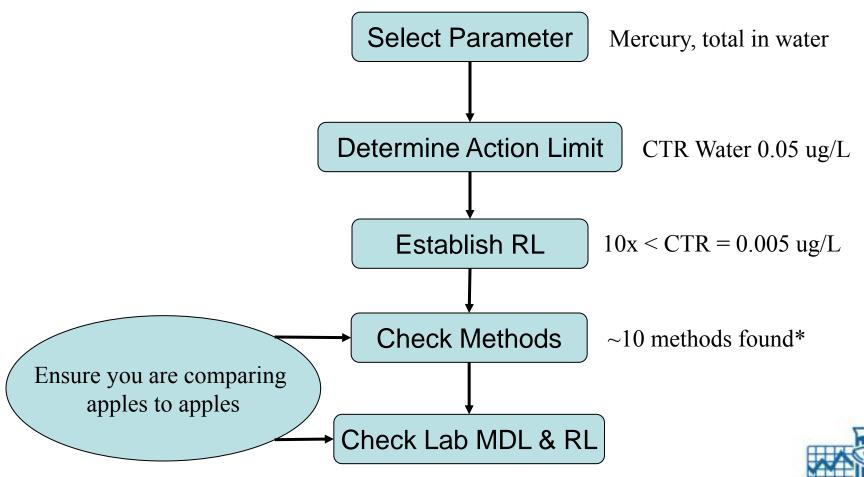
Surface Water Ambient Monitoring

Program

SWAMP Website Hosted by MLML

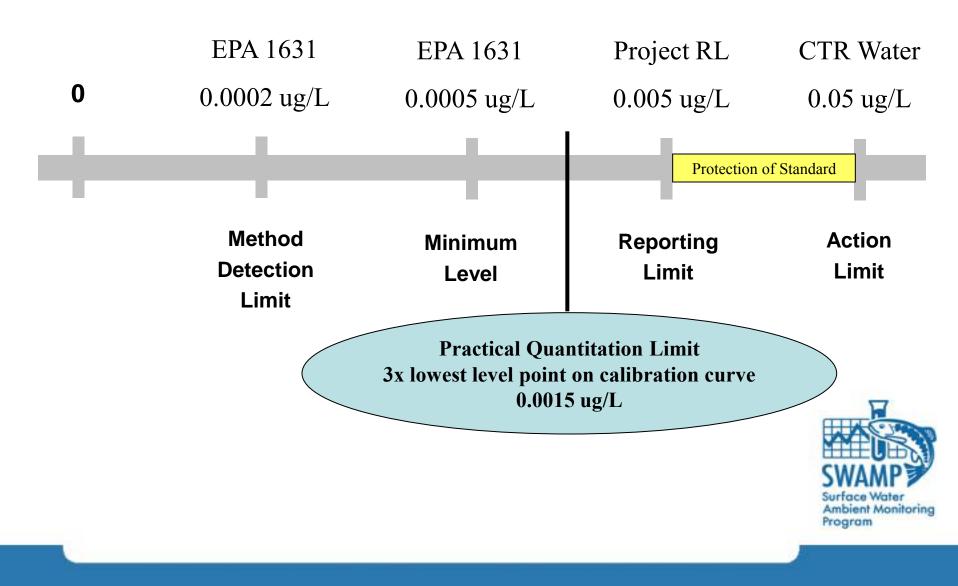
<i>(</i> MPS	iL » Quality Assurance - Windows Inte	rnet Explorer	_ 7
06	🖉 🗢 💽 http://swamp.mpsl.mlml.calstate.ec	u/resources-and-downloads/quality-assurance	
File	Edit View Favorites Tools Help		
- 🟠 ·	🔹 🖶 🔹 Page 👻 Safety 👻 Tools 👻 🕢 👻		
🔶 Fave	orites 🗽 MPSL » Quality Assurance		
	Database Management Systems SWAMP v2.5 Database Documentation v2.5 Templates v2.5 Translators and Transformers v2.5 SWAMP v2.2 database Documentation v2.2 Templates v2.2 Required Data Submission Information Quality Assurance Quality Assurance Project Plan Guidance Quality Assurance Report Template Data Verification and Validation Systems Systems Assessments	Quality Assurance The Surface Water Ambient Monitoring Program Quality Assurance Program Plan (QAPrP) serves as an umbrella document for use by each of SWAMP's contributing projects. It describes the program's quality system in terms of organizational structure; the functional responsibilities of management and staff; the lines of authority; and the interfaces for those planning, implementing, and assessing all activities conducted. Quality Assurance Project Plan Guidance A quality assurance project plan (QAPP) is required for certain large, ongoing, or special projects conducted by the Regional Water Quality Control Boards (Regional Boards) or contractors under SWAMP. To streamline the creation of these documents, SWAMP encourages the use of its own standardized review checklist, QAPP template, and SWAMP Advisor Expert System. Quality Assurance Report Template To sensure consistent presentation and reporting of quality Assurance Team (QAT) have created templates for the Quality Assurance section of the SWAMP Regional Report. To ensure consistent presentation and reporting of quality assurance (QA) data, these templates include a narrative and table. Data Verification and Validation Systems SWAMP plans to employ three stages of data review: first-party review in the laboratory or field, second-party review by the SWAMP DMT, and third-party validation on a percentage of data by the SWAMP DMT, and third-party validation on a percentage of data by the SWAMP DAT. System Assessments The SWAMP QAT performs periodic onsite and remote quality system assessments of the program's master contract laboratories.	Search Centre Centre Centre California Environmental Data Exchange Network CeDEN Link FTP Allows file sharing when conducting State and Regional Board SWAMP business on the FTP site
🛃 st	tart 📄 🤌 🖾 오 🕞 🖻 🖾	🕼 🕟 Inbox in Wi 🖉 MPSL » Qua 🔞 Microsoft P	🐠 🗧 🌾 🕽 🕬 12:56 PM


Determining Program/Project Reporting Limits


How do I determine program/project RLs?

- Program/project reporting limits should be based on the use of the data.
 - This may include, but is not limited to, water quality standards, assessment thresholds, TMDLs, regulatory contexts, and use of results with other testing (such as toxicity testing).
- You can find additional information to help determine RLs by looking in the SWAMP QAPrP, the project QAPPs, basin plans, the CTR, and in the analytical methods.
- It is important to understand that you cannot set reporting limits below the lowest level of state-of-the-art analytical capabilities.
- Consider cost/benefit
 - Lower RL may mean less resources for field samples
 - Ensure RL is based on data use

* Use NEMI to find methods: www.nemi.gov


Surface Water Ambient Monitoring

Program

Method Search

Method #	Source	Detection Level	Detection Type
200.8	EPA	0.2 ug/L	MDL
200.7	EPA	7 ug/L	MDL
245.1	EPA	0.2 ug/L	RNGE
I-1462	USGS	0.5 ug/L	RNGE
I-7462	USGS	0.5 ug/L	RL
D6502	ASTM	1 ug/L	ML
1631	EPA	0.0002 ug/L	MDL
245.7	EPA	0.0018 ug/L	MDL

RL = 0.005 ug/L

Working with a Laboratory and Reporting Limits

Laboratory Reporting Limits

- Generally, a laboratory will establish its reporting limits based on the lowest point in the calibration curve or as 3x the lowest point in the calibration curve. Another method is to set the RLs at 2-5 times the MDL.
- It is easy for a laboratory to misrepresent these terms, so when selecting a lab for your project, be sure to gather the appropriate information.
- Ask to see how MDLs, PQLs, RLs are determined. If the lab can not supply that information quickly, this is a red flag.

Selecting a Laboratory

Program/project should:

- Supply parameter list to lab
 - List of analyte/matrix combinations to lab along with RL requirements

Lab should:

- Provide list of RLs and MDLs, including methods or SOPs and any modifications (in writing)
- Define how the RLs are determined (are they PQLs, MLs, etc.)
- Identify if they will comply with all the program/project or QC requirements
- Have a designated QA Officer

Both should:

Include reporting limits as part of the written contract

Documents for Communication of Reporting Limits

How should RL requirements be communicated?

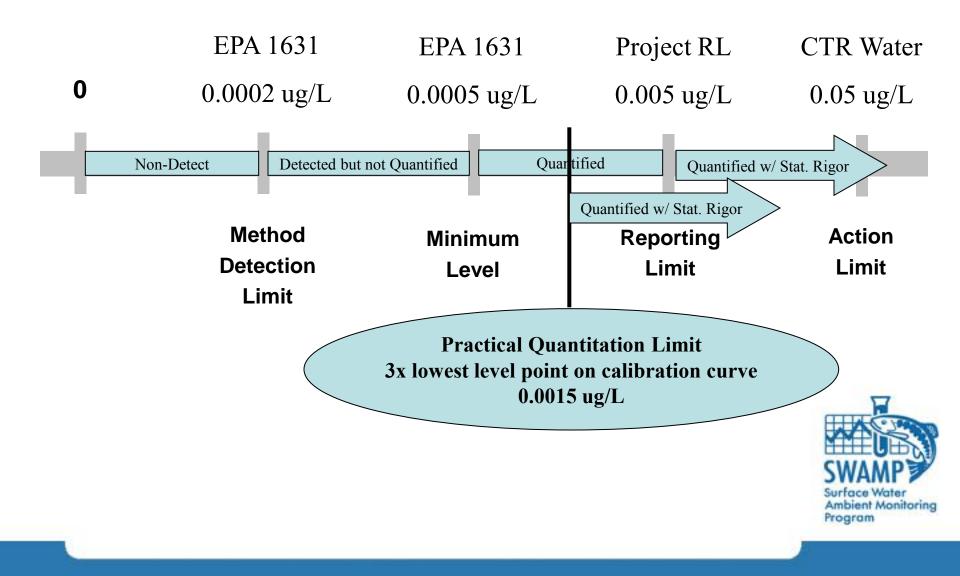
Reporting limits should be communicated:

- In legal documents such as permits and contracts;
- During project planning and coordination meetings;
- Within a QA Program or Project Plan; and
- During the laboratory selection process.

Permits and Contracts

- Specifying RL requirements directly into legal documents such as permits and contracts
 - Improves communication between data producer and data users
 - Prompts all parties/organizations to clarify important project details
- Suggestions for Legal Documents
 - MQOs (i.e., QC samples types, quantities, and limits)
 - Holding Times
 - Methods
 - Reporting Limits (and MDLs)
 - Reporting Formats & Timelines
 - Subcontracting work

Comments on Reporting in the Context of Quantitation Limits



Reporting

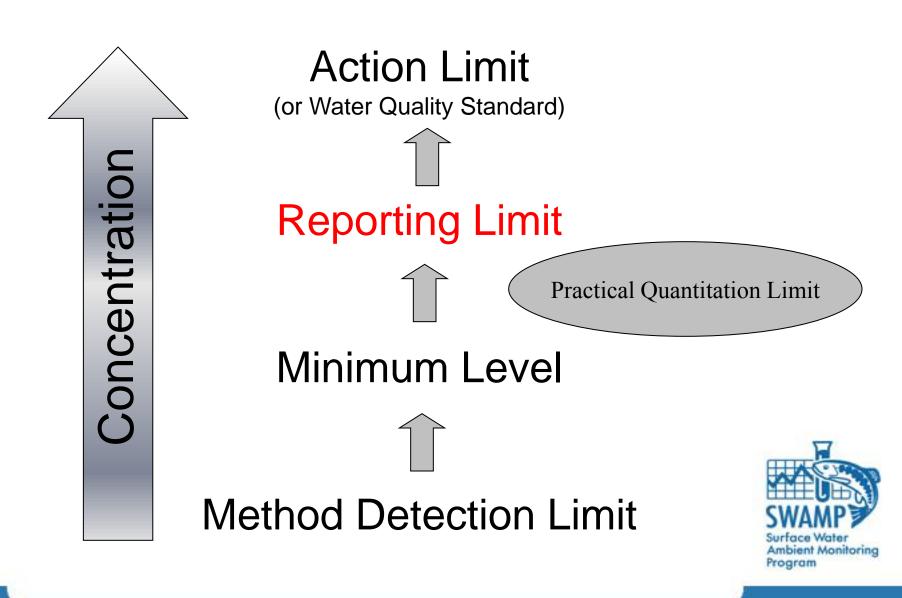
When reporting data, other terms worth understanding include:

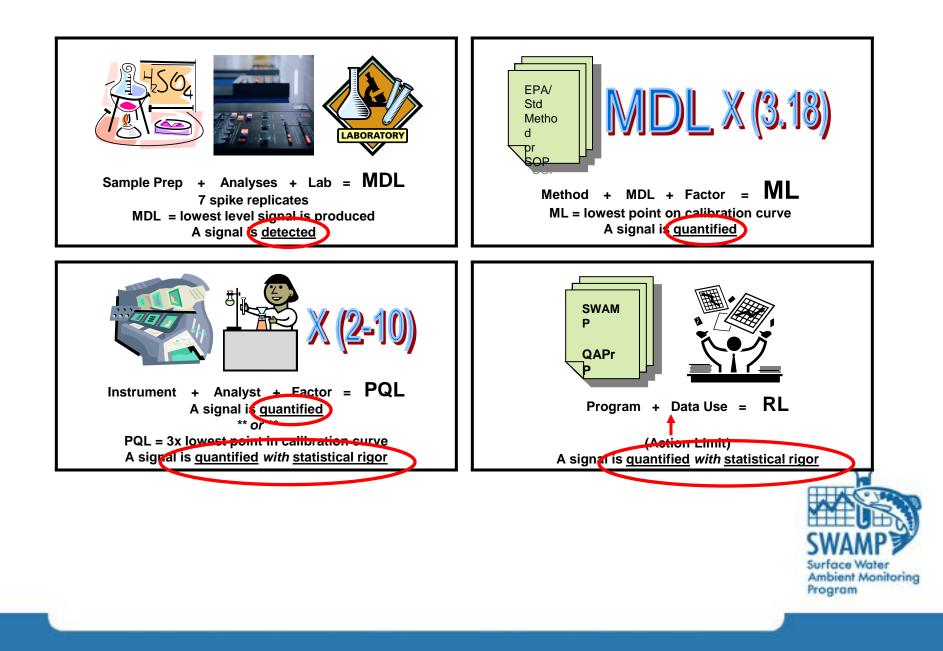
- Not Detected (ND): Sample result is less than MDL; Analyte being tested cannot be detected by the equipment or method.
- Detected Not Quantifiable (DNQ): Sample result is between the MDL and the ML. These results may be reported as the measured value (not negative) with a flag that is carried all the way through data storage, handling, and reporting.

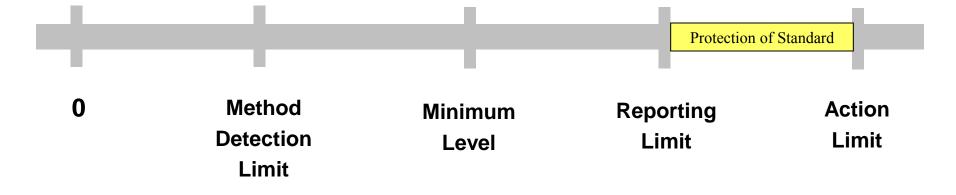
New Developments – Stay Tuned to EPA

- US EPA Report December 2011
- A Laboratory Study of Procedures Evaluated by the Federal Advisory Committee on Detection and Quantitation Approaches and Uses in Clean Water Act Programs
- http://water.epa.gov/scitech/methods/cwa/det/upload/fac_rep ort_2009.pdf
- Study found that the procedures for determining method detection/quantitation are flawed.
- "none of the procedures tested consistently generated accurate estimates of the lowest concentration" page 88
- Note that the study itself lacked in statistical power and realworld applicability in terms of # of labs and methods

Conclusion




Outcome


- A general understanding of common quantitation limit terms
- An understanding of the differences between quantitation limits
- The SWAMP requirements for reporting limits and SWAMP resources
- A <u>brief</u> introduction to determining reporting limits
- Tips for ensuring labs can hit reporting limits

Slide 58



Reporting Limits 102

- Examples of setting reporting limits for different Water Board uses
- Can the action limit (e.g., assessment threshold/water quality standard) and RL be the same?
- Can standards be below method capabilities?
- How to set reporting limits when chemistry results are tied to other data, such as toxicity testing
- Benefits to statistical rigor using an RL of 3x the lowest point on calibration curve
- How to work with results that are between the MDL and RL results that are detected but not quantified
- I need lower RLs and MDLs what can I do?

Where do I get help?

SWAMP QA Help Desk (206) 525-0491 swampQA@mlml.calstate.edu

Slide 63

The QA Research Group at Moss Landing Marine Laboratories

Specializing in the <u>Quality Assurance</u> associated with all areas of environmental science such as in-stream flow, bioassessment, P-Hab, chemistry (including ultra-trace and speciation), toxicity testing, statistical analysis, field measurements, and database structures. If you would like to contract with the QA Research Group, please contact Beverly H. van Buuren.

Matthew A. Gomes, QA Specialist <u>mgomes@mlml.calstate.edu</u>

William S. Hagan, QA Specialist whagan@mlml.calstate.edu

Beverly H. van Buuren, Manager bvanbuuren@mlml.calstate.edu

Amara F. Vandervort, Coordinator avandervort@mlml.calstate.edu

Eric J. von der Geest, QA Specialist evondergeest@mlml.calstate.edu

Melinda E. Woodard, QA Specialist <u>mwoodard@mlml.calstate.edu</u>

SWAMP QA Program Resources

- SWAMP 2008 QA Program Plan
 - <u>http://www.waterboards.ca.gov/water_issues/programs/swamp/tool</u> <u>s.shtml#qa</u>
- SWAMP QA Help Desk
 - 206-525-0491
 - <u>swampqa@mlml.calstate.edu</u>
- SWAMP Advisor (QAPP-creation software)
 - <u>http://swamp.waterboards.ca.gov/swamp/qapp_advisor/</u>
- SWAMP Web Site (Google search: SWAMP QA Help)
 - <u>http://swamp.mpsl.mlml.calstate.edu/</u>
 - <u>http://www.swrcb.ca.gov/water_issues/programs/swamp/tools.s</u>

