Causal Analysis of California Biologically Impaired Waters

Scot Hagerthey National Center for Environmental Assessment Office of Research and Development Environmental Protection Agency hagerthey.scot@epa.gov

Provide a brief introduction to causal assessment and the California Case Studies WHY?

- The State of California is setting biological expectations to ensure protection of aquatic life beneficial uses for perennial freshwater streams.
- When biological expectations are not attained and the cause is not readily apparent or obvious, a collaboration between regulated and regulatory agencies is required to identify the cause and remedy the situation.
- Causal Assessment is a formal method for identifying the probable causes of biological impairment.
 - can be conducted using available information
 - can be a means for engaging stakeholders

Why Establish Causation?

- To fix the problem, you have to know what to fix.
- Biological assessments are commonly used to identify if streams are impaired.
- In many cases, causes of impairment are unknown.

General Impairment Name	Causes of Impairment Reported	Percent of Reported
MERCURY	855 <u>5</u>	13.45
PATHOGENS	8526	13.41
<u>SEDIMENT</u>	6689	10.52
METALS (OTHER THAN MERCURY)	6389	10.05
NUTRIENTS	<mark>5654</mark>	8.89
OXYGEN DEPLETION	4568	7.18
PH	<u>3389</u>	5.33
CAUSE UNKNOWN - BIOLOGICAL INTEGRITY	2866	4.51
TEMPERATURE	2854	4.49
HABITAT ALTERATION	<mark>2220</mark>	3.49
PCBS	2081	3.27
TURBIDITY	2050	3.22
CAUSE UNKNOWN	1356	2.13
PESTICIDES	1322 <u>1322</u>	2.08
SALINITY/TDS/CHLORIDES	<mark>996</mark>	1.57
FLOW ALTERATION	<mark>591</mark>	.93
ALGAL GROWTH	<u>510</u>	.80
AMMONIA	4 <u>15</u>	.65
OTHER TOXIC ORGANICS	<mark>339</mark>	.53
TOTAL TOXICITY	<u>292</u>	.46
DIOXINS	<u>290</u>	.46
TOXIC INORGANICS	270	.42
FISH CONSUMPTION	260	

Ve are human. We tend to form conclusions quickly and, because we're smart, we can ably defend them.

Establishing Causation

- STATES STATES
- Causation is one of the most difficult & controversial concepts in philosophy.
- A randomized, replicated, controlled experiment is the ONLY reliable method for establishing causation.
- THE PROBLEM- Environmental monitoring designs are rarely randomized, replicated, and controlled.

- To provide a defensible & reproducible evaluation
- To identify causal relationships that are not immediately apparent
- To prevent biases and other lapses of logic
- To increase confidence that remedial or restoration efforts can improve biological condition

"Science is a way of trying not to fool yourself. The first principle is that you must not fool yourself – and you are the easiest person to fool." [Feynman 1964]

How to Establish Causation

Make SPECIFIC rather than GENERAL statements

- AVOID General Does C cause E?
 - Does smoking cause lung cancer?
 - Does increased water temperature reduce bull trout abundance in rivers?
- > **MAKE** Specific **Did** C cause E?
 - Did smoking cause lung cancer in Ronald Fisher?
 - Did increased water temperature reduce bull trout abundance in *my* stream?

Causal Assessment

- EPA's approach to Causal Assessments is <u>Pragmatic</u> (analysis guides actions).
- Centered on <u>Abductive Inference</u>, where the best hypothesis is identified to explain the available information rather than proving a hypothesis correct or incorrect.
- Aims to establish <u>Specific Causation</u> rather than <u>General</u> <u>Causation</u> (DID x cause y rather than CAN x cause y).
- The most likely cause is established by <u>Causal Inference</u>, the interpretation of available evidence:
 - Identify and compare alternative candidate causes
 - Logically eliminate when possible
 - Diagnose when possible
 - Use strength of evidence for remaining
 - Identify most likely cause

Causal Assessment

- The Up-Side...
 - A formal method that provides scientifically defensible results when the stressor is not readily apparent or obvious.
 - The evaluation is reproducible.
 - Prevents biases and other logic lapses.
 - May identify causal relationships that are not readily apparent.
 - Engages stakeholders & decision makers early in the process thereby reducing controversy.
 - Increases confidence in the selected management option.
- ...and the Down-Side
 - Conducting Causal Assessments are not necessarily easy or straightforward.
 - Mechanisms of biological impacts can be complex.
 - There is no "one-size-fits-all" methodology.
 - Data are as data do (quantity and quality matter).
 - Net result, a smoking fish may not be found or multiple stressors remain probable causes.

The Causal Analysis Framework

What is CADDIS? (www.epa.gov/caddis)

CADDIS: The Causal Analysis/Diagnosis Decision Information System

Quick Finder

CADLit CADStat Case Studies Causal Assessment Background Getting Started with Data Analysis ICD Application Step-by-step Guide

The **Causal Analysis/Diagnosis Decision Information System, or CADDIS**, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems. It is organized into five volumes:

- Volume 1: Stressor Identification provides a step-by-step guide for identifying probable causes of
 impairment in a particular system, based on the U.S. EPA's Stressor Identification process. If you are interested
 in conducting a complete causal assessment, learning about different types of evidence, or reviewing a history of
 causal assessment theory, start with this volume.
- Volume 2: Sources, Stressors & Responses provides background information on many common sources, stressors, and biotic responses in stream ecosystems. If you are interested in viewing source- and stressorspecific summary information (e.g., for urbanization, physical habitat, nutrients, metals, pH and other stressors), start with this volume.
- Volume 3: Examples & Applications provides examples illustrating different steps of causal assessments. If
 you are interested in reading completed causal assessment case studies, seeing how Stressor Identification
 worksheets are completed, or examining example applications of data analysis techniques, start with this
 volume.
- Volume 4: Data Analysis provides guidance on the use of statistical analysis to support causal assessments. If you are interested in learning how to use data in your causal assessment, start with this volume.
- Volume 5: Causal Databases provides access to literature databases and associated tools for use in causal assessments. If you are interested in applying literature-based evidence to your causal assessment, start with this volume.

Basic Information Recent Additions Frequent Questions Publications Glossary Related Links

Top Three Ouestions

- What's new in the 2010 release of CADDIS?
- 2. How do I cite CADDIS?
- Where can I view a site map for CADDIS?

CADDIS Navigation

CADDIS Home

Volume 1: Stressor Identification Volume 2: Sources, Stressors & Responses Volume 3: Examples & Applications Volume 4: Data Analysis Volume 5: Causal Databases

Recent Additions

- 1. New Causal Assessment
 - **Background section**
- 2. New source & stressor modules
- O Urbanization
- O Ammonia
- O Herbicides
- O Insecticides
- о рН
- O Physical habitat
- 3. New causal assessment Case Studies
- 4. Revised Data Analysis section
- 5. Expanded Interactive
- Conceptual Diagram application

- Not every stream is going to meet biological objectives
- When a stream is non-compliant, causes need to be determined for remediation
- Causal assessment approaches have not been well-vetted in California
- Three (four) case studies
 - Salinas River (agricultural)
 - Garcia River (timber dominated)
 - Santa Clara and San Diego (urban)

The Salinas River Impairment Detection

	309DAV	309SSP	309SAC	309SAC	309GRN	309GRN	314SYL
	CCAMP	CMP	CMP	CCAMP	CCAMP	CMP	CMP
SoCal IBI	14	19	24	29		30	34
Sampling Date	6 Jun	26 May	25 May	6 Jun	14 Jun	26 May	14 May

The Salinas River- Step 1 Case Definition

Salinas River			Des
Length	282 km		municipal and
Basin	10,774 km ²		agri
Discharge	12 (0-2690) m ³ /sec		industr
Mean Annual Discharge	268 699 acre-feet		แนนรแ
Mean Annual Discharge	200,000 0010 1000		industr
Precipitation	28-84 cm/yr		groun
309DAV 309SSP			water
Sampled Sites 309SAC Primary roads 309GRN			non-cont
Secondary roads Ramps Subbasins, catchments			w
Developed, open space Developed, low intensity Developed, medium intensity	Open water Developed, open space Developed, low intensity Developed, medium intensity		cold fr
Developed, high intensity Barren land Deciduous forest			warm f
Evergreen forest Mixed forest Shrubiscrub	Evergreen forest Mixed forest Shrub/scrub Grassland/herbaceous Pasture/hay Cultivated crops		migration
Grasslandherbaceous Pasture/hay Cultivated crops			commerc
Woody wetlands Emergent herbaceous wetlands	and the second s		oommore

The Salinas River- Step 1 Case Definition

- Potential Candidate Causes Identified for the Salinas River
 - Increased Sediments
 - Increased Ionic Strength
 - Increased Pesticides
 - Decreased Dissolved Oxygen
 - Increased Metals
 - Nutrient enrichment & toxicity
 - Flow Alteration
 - Physical Habitat Alteration

Evidence from the Case

- Co-occurrence (space & time)
- Exposure or mechanism
- Causal pathway
- Stressor-response relationships from field
- Manipulation
- Lab tests of site media
- Temporal sequence
- Verified predictions
- Symptoms

Scoring Summary- Step 5

309DAV against 309SAC	Decreased DO	Increased Pesticides	Metals	Increased Nutrients	Increased Ionic Strength	Increased Sediment (Bed)	Increased Sediment (Susp)	Altered Flow Regime	Altered Physical Habitat
	T	ypes of Evic	dence that	Use Data fi	rom the Ca	se			
Spatial/Temporal Co-Occurrence	-	NE	NE	+			+	-	H
Causal Pathway	0	+	0	0	0	-	+	0	+
Stressor-Response from the Field	-			-	I	I	++	+	
Laboratory Test of Site Media		-	-						
Temporal Sequence							+		
Types of Evidence that Use Data from Elsewhere									
Stressor-Response from Other Field Studies							+		
Stressor-Response from Laboratory		+	+						
Evaluating Multiple Types of Evidence									
Consistency of Evidence	-			-		-	+	-	_
U.S. Environmental Protection Agency					26				

Final Conclusions: Likely Contributors

Candidate Cause	Evidence and comments
Suspended sediments	Concentrations consistently higher at subject sites relative to comparator; Concentrations at levels associated with effects in other studies
Physical habitat	Especially as influenced by suspended sediments

Final Conclusions: Unlikely Contributors

Candidate Cause	Evidence and Comments
Dissolved oxygen	Concentrations similar between subject and comparator sites; however, data was limited.
Nutrients	Concentrations peak and differences occur well after invertebrate samples are collected.
Ionic Strength	Concentrations peak and differences occur well after invertebrate samples are collected.
Flow Regime	Flow regimes are similar among the subject and comparator sites.

Final Conclusions: Significant Questions Remain

Candidate Cause	Evidence and Comments
Pesticides	Very limited data available for assessment.
Metals	Very limited data available for assessment.

- Causal Assessment is one step in environmental assessment.
 - The goal is to identify the causes of biological impairment.
 - It is a formal method that engages stakeholders to identify candidate causes of biological impairment.
 - Focuses on Specific Causations (Did X Cause Y)
 - Based on Available Evidence
 - Centered on the five steps of Stressor Identification

Causal Assessment-Lessons Learned California Case Studies

- The formal process, which encourages stakeholder involvement, fostered and focused communication.
- Useful for eliminating candidate causes.
- Recommendations for the existing condition assessment monitoring program to increase causal assessment effectiveness.
- Recommendations for California specific data analysis and support tools.
 - Formalized "comparator" site selection
 - Stressor-response models for pesticides

Acknowledgements

- Partners with the State of California
 - Ken Schiff (SCCWRP)
 - David Gillett (SCCWRP)
 - Peter Ode (DFG)
 - Jim Harrington (DFG)
 - Andy Rehn (DFG)
- The stakeholders (16 in total) representing the three Case Studies
- Michael Paul and his team at Tetra Tech