Using SPARROW to Model Total Nitrogen Sources, and Transport in Rivers and Streams of California

By Dina Saleh and Joseph Domagalski USGS, California Water Science Center

Outline of Presentation

- What is SPARROW?
- Applications of SPARROW for California
- SPARROW data sets and calibration
- Nitrogen sources and loads
- Further work and model refinement

What is SPARROW?

Acronym for: SPAtially–Referenced Regression On Watershed attributes

- Help understand factors affecting water quality;
- Predict mean-annual flux and yield and concentration for unmonitored stream reaches and watersheds;
- Apportion stream loads to major nutrient sources and upstream watersheds;
- Assess effects of hydrological and biogeochemical processes on transport and fate in watersheds;

- Simulate water-quality response to climate and land-use change (historical, future);
- Constituents modeled successfully : Nitrogen, Phosphorus, Suspended Sediment, and Organic Carbon

Science for a changing work

Goals of the SPARROW model for California

- Understand loads and yields from unmonitored streams throughout the State
- Understand factors affecting transport of nitrogen and phosphorus
- For specific downstream waterbodies, such as the Delta: Predict source areas and scale to specific contributing watersheds or stream segments

Linkage to Stream Network, National Hydrography Database, version 2

NHDPLUS 18V02_01:

Scale is 1:100k
From 30 meter DEM
Blue lines are streams with defined watersheds (178,000)

•Orange lines are areas with no defined watersheds.

Chemistry and Discharge Data

- Chemistry data were obtained from USGS, California DWR, University of California, Davis, the STORET database (USEPA), and others
- Discharge data were obtained from USGS and California DWR sources

SPARROW Data Layers

- Base Flow Index
- 30 year average Precipitation, 1971 -2000 (800 meter)
- Climate: Annual Precipitation, 2002 (4,000 meter)(Total precipitation)
- 30 year average Temperature 1971 -2000 (800 meter)
- > 2002 Average temperature
- Bedrock Geology
- Surficial Geology
- Hydrologic Landscape Regions
- Population Density
- Level III EcoRegions
- Nutrient EcoRegions
- NLCD 2001
- > 2001 Percent Impervious Surface 2001
- > 2001 Percent Canopy
- Mean Annual R-factor, 1971-2000
 - Physiography

- STATSGO
- Recharge
- Infiltration Excess Overland Flow
- Saturation Excess Overland Flow
- Atmospheric Deposition
- Normalized Atmospheric Deposition NO3, NH4, Total Inorganic N
- Nutrient Inputs from Fertilizer and Manure (N&P)
- Nutrient Application for Fertilizer and Manure Applied to Crops
- Estimated Area of National Resource Inventory Variables: Tile Drains (1992), Ditches (1992), Total Artificial Drainage (1992) and Irrigated Area (1997)
- Physical Measures, Drainage area, Basin Shape Index, Sinuosity, Slope, Stream Density, Stream Length, Road Density etc
- Average streamflow (in cfs) for the period WY1975 to WY2007 from NHDPlus estimated using the Unit Runoff Method (UROM).

N Concentrations and Types by Eco-Region

TN Loads using Fluxmaster

TN Calibration Sites

Running SPARROW

TN Model Calibration Results

Parameter	Probability level (p-value)
Sources	
Fertilizer and Confined Manure (kg/yr)	0.011
Unconfined Manure (kg/yr)	0.052
Forest Land (km ²)	< 0.001
Developed land (km ²)	0.058
Point Sources kg/yr	0.078
CC .	

TN Model Calibration Results

Parameter	Probability level (p-value)
Sources	
Fertilizer and Confined Manure (kg/yr)	0.011
Unconfined Manure (kg/yr)	0.052
Forest Land (km ²)	< 0.001
Developed land (km ²)	0.058
Point Sources kg/yr	0.078
Land to Water Delivery	
Percent Sand (km ²)	0.018
22	

Land To Water Delivery

TN Model Calibration Results

Parameter	Probability level (p-value)	
Sources		
Fertilizer and Confined Manure (kg/yr)	0.011	
Unconfined Manure (kg/yr)	0.052	
Forest Land (km ²)	< 0.001	
Developed land (km ²)	0.058	
Point Sources kg/yr	0.078	
Land to Water Delivery		
Percent Sand (km ²)	0.018	
Aquatic Loss		
Small Perennial Streams Flow < 500 cfs	< 0.001	
Large Perennial Streams Flow > 500 cfs	0.042	
Intermittent Streams (cfs)	< 0.001	

Aquatic Decay

- Small Perennial Streams Flow < 500 cfs</p>
- Large Perennial Streams Flow > 500 cfs
- Intermittent Streams

TN Model Calibration Results

Parameter	Probability level (p-value)	
Sources		
Fertilizer and Confined Manure (kg/yr)	0.011	
Unconfined Manure (kg/yr)	0.052	
Forest Land (km ²)	< 0.001	
Developed land (km ²)	0.058	
Point Sources kg/yr	0.078	
Land to Water Delivery		
Percent Sand (km ²)	0.018	
Aquatic Loss		
Small Perennial Streams Flow < 500 cfs	< 0.001	
Large Perennial Streams Flow > 500 cfs	0.042	
Intermittent Streams (cfs)	< 0.001	
Model Diagnostics		
R ² /R ² of Yield	0.89/0.65	
RMSE	0.67	
Number of observations	79	

Model Prediction

Source and Load TN loads ton/yr 0.00 - 69.78 69.78 - 266.77 266.77 - 627.96 Fertilizer and 627.96 - 1182.41 Manure ton/yr 1182.41 - 2056.93 0.00-13.20 300 2056.93 - 3194.5 13.20 - 53.55 3194.55 - 4725.20 53.55 - 132.68 > 4725.20 132.68 - 306.33 > 306.33

Farm Fertilizer and Confined Manure

Modeled Load (p-value = 0.011)

Unconfined Manure

Modeled Load (p-value = 0.052)

Developed Land

Modeled Load (p-value = 0.058)

Forest Land

Modeled Load (p-value < 0.001)

Source and Load

Point Sources

Modeled Load (p-value = 0.078)

TN Load Sources

Sacramento River TN Loads

San Joaquin River TN Loads

Building the California TP model

- Building the California TP model
- Incorporating the Tahoe Basin into the California SPARROW model

Incorporating the Tahoe Basin into the California SPARROW model:

- Adding13 more calibration sites in the forested area
- Compare model results to ongoing research in the Tahoe basin

- Building the California TP model
- Incorporating the Tahoe Basin into the California SPARROW model
- Klamath River: adding new calibration sites and river diversions

- Building the California TP model
- Incorporating the Tahoe Basin into the California SPARROW model
- Klamath River: adding new calibration sites and river diversions
- Refining watersheds adding more diversions

- Building the California TP model
- Incorporating the Tahoe Basin into the California SPARROW model
- Klamath River: adding new calibration sites and river diversions
- Refining watersheds adding more diversions
- Linking loads to Delta to upstream sources

- Building the California TP model
- Incorporating the Tahoe Basin into the California SPARROW model
- Klamath River: adding new calibration sites and river diversions
- Refining watersheds adding more diversions
- Linking loads to Delta to upstream sources
- Interpretations of results (publications)

- Building the California TP model
- Incorporating the Tahoe Basin into the California SPARROW model
- Klamath River: adding new calibration sites and river diversions
- Refining watersheds adding more diversions
- Linking loads to Delta to upstream sources
- Interpretations of results (publications)
- Developing the <u>CA SPARROW Decision</u> <u>Support System</u>

What is the SPARROW Decision Support System?

SPARROW Decision Support System

Improved transparency and access to the model to inform management decisions

- Building the California TP model
- Incorporating the Tahoe Basin into the California SPARROW model
- Klamath River: adding new calibration sites and river diversions
- Refining watersheds adding more diversions
- Linking loads to Delta to upstream sources
- Interpretations of results (publications)
- Developing the <u>CA SPARROW Decision Support</u> <u>System</u>
- Presenting results from the SPARROW model in the Bay Delta Conference

QUESTIONS?

