Site-specific Profiles of Fish Feminization in Surface Waters of California Indicate Multiple Causes of Estrogenic Activities

Daniel Schlenk Department of Environmental Sciences University of California, Riverside

Thanks

- Ramon Lavado
- Wesley Jones
- Daryl Bulloch
- Inge Werner
- Emily Floyd
- Jorge Loyo-Rosales
- David Sedlak
- Ed Kolodziej
- Shane Snyder
- David Crane

- Calfed Bay Delta Program
- USDA/AES

Limitations and Complexity of Environmental Chemical Analysis

How to Measure Pharmaceutically Active Compounds

- Analytical Chemistry
 - Bioavailability?
 - Unknowns?
- Bioassay
 - In vitro (Receptor driven--Cell lines)
 - In vivo (Receptor driven--whole animal)

Response

Aqueous 17-β-estradiol (ng/L)

Figure II. Relationship between *in vitro* bioassay EEQs and chemically estimated EEQs in various studies (30, 33, 36, 38, 39, 64-67).

VTG induction as a tool to evaluate estrogenic exposure in fish

Pelagic Organism Decline

Sommers et al. 2009

Material & Methods: Sampling sites

Site	Site name
1	Upper Sacramento River
2	Battle Creek
3	Upper Feather River
4	Yuba River
5	Lower Feather River
6	Lower Sacramento River
7	Lower American River
8	Sacramento River in Delta
9	Mokelumne River
10	Stanislaus River
11	San Joaquin River
12	Tuolumne River
13	Merced River
14	Napa River
15	Clifton Court Forebay
-	

Material & Methods: Extracts & Exposures

High Estrogenicity Areas (both methods)

In Vivo Estrogenicity

In vivo vitellogenin induction in Japanese medaka exposed for 7 days, measured by ELISA

Fractionation of Water Extracts from OCSD plume and Reference site for the Determination of unknown estrogens.

NAPA River

SACRAMENTO RIVER DELTA

SPE fractionation

Measured Analytes for Bioactive Fractions

Phytoestrogens	Pharmaceuticals & Personal Care Products		Pesticides		Steroid Hormones	APEO/AP
Genistein	Sulfamethoxazole	Aldicarb	Promecarb	Secbumeton	17β-Estradiol	4-Octylphenol
Daidzein	Atenolol	Aldicarb Sulfone	Propham	Simazine	Estrone	OP1EO
Formononetin	Trimethopri m	Aldicarb sulfoxide	Siduron	Simetryn	Estriol	OP2EO
Biochanin A	lopromide		Clauron	Gineayn	Deservations	4-
		Aminocarb	Swep	Terbuthylazine	Progesterone	Nonylphenol
Apigenin	Caffeine	Barbamate	Chlorpyrifos	Terbutryn	Testosterone	NP1EO
Naringeni n	Fluoxetine	Baygon	Diazinon	Thiobencarb	Androstendione	NP2EO
Courstrol	Meprobamate	Captan	Imidacloprid	DEET	Ethynylestradiol	
Matairesinol	Carbamazepine	Carbofuran Carbofuran	Oryzalin	Cypermethri n		
Equol Glycitein	Diazepam Atorvastatin Benzophenone Primidone TC P P TC E P Gemfibrozil Bisphenol A Diclofenac Naproxen Triclosan	phenol-3-ketone Chlorpropham Dioxacarb Diuron Fenuron Fluometuron 3- Hydroxycarbofuran Linuron Methiocarb Methomyl	Oxyfluorfen Tebuconazole Ametryn Atraton Atrazine Cyanazine Deisopropyl- atrazine Desethyl-atrazine Desmetryn Dipropetryn	Deltamethrin Cyfluthrin Bifenthrin Triclopyr 2,4-D		
	вна	Monuron	2-Hydroxyatrazine			
	Musk kotopo	Neburon	Molinate			
		Oxamyl	Prometon			
		Propazine	Prometryn			

Pesticides detected (ng/L) in Estrogenically active fractions

		diuron	simazine	2-hydroxyatrazine	in vitro, EEQ, ng/L	in vivo, EEQ, ug/kg
	Blk					
Delta	8/60	2.45		0.20	11.18	0.54
Denta	8/80	0.31			0.49	BDL
Napa	14/80	6.16	4.13	2.77	50.4	0.53
-	14/100	6.88	2.96	1.66	18	2.1

Evaluation of Reconstituted Pesticide Mixture by In vitro Hepatocyte Vtg mRNA assay

	Concentration					
Pesticide	Low Do	se (1X)	High Do	ose (5X)		
	Water	In cells	Water	In cells		
Simazine	7.2 µg/L	428 µg/L	36 µg/L	2.16 mg/L		
Diuron	7 µg/L	420 µg/L	35 µg/L	2.1 mg/L		
Atrazine	0.5 µg/L	30 µg/L	2.5 µg/L	150 µg/L		
Deisopropylatrazine	4.3 µg/L	256 µg/L	21.5 µg/L	1.29 mg/L		
Hydroxyatrazine	5.7 µg/L	342 µg/L	28.5 µg/L	1.71 mg/L		

		Concentration					
	Control	P1	P2	A1	A1+P1	A2	A2+P1
Pesticides							
Simazine	-	7.2 µg/L	36.0 µg/L	-	7.2 µg/L	-	7.2 µg/L
Diuron	-	7.0 µg/L	35.0 μg/L	-	7.0 µg/L	-	7.0 µg/L
Atrazine	-	0.5 µg/L	2.5 μg/L	-	0.5 µg/L	-	0.5 µg/L
Deisopropylatrazine	-	4.3 µg/L	21.5 µg/L	-	4.3 µg/L	-	4.3 µg/L
Hydroxyatrazine	-	5.7 µg/L	28.5 µg/L	-	5.7 µg/L	-	5.7 µg/L
APEO							
Octylphenol (OP)	-	-	-	2.4 ng/L	2.4 ng/L	260 µg/L	260 µg/L
Octylphenol Polyethoxylates (OPEOs)	-	-	-	4.8 ng/L	4.8 ng/L	520 µg/L	520 µg/L
Nonylphenol (NP)	-	-	-	139.5 ng/L	139.5 ng/L	15.0 mg/L	15.0 mg/L
Nonylphenol Polyethoxylates (NPEOs)	-	-	-	155.5 ng/L	155.5 ng/L	16.6 mg/L	16.6 mg/L

Effects of Pesticide and Surfactant Mixtures on in vivo Vitellogenin Protein Expression in Japanese medaka

Effects of APE surfactants on the Estrogenic activity of 2,4 D

Figure 2. Estradiol equivalent concentrations (EEQs) of various concentrations of R-11 and 2,4-D. Solid bars are R-11, open bars are for 2,4-D, while dashlined bars are for the mixture of R-11 and 2,4-D.

Dose	Conc.s of chemicals		dose	Conc.s of chemicals
	R-11 (mg/L)	2,4-D (mg/L)		R-11 (mg/L)+2,4-D (mg/L)
D 1	0.00089	0.00164	d 1	0.00089 R-11 + 0.00164 2,4-D
D 2	0.0089	0.0164	d 2	0.0089 R-11 + 0.0164 2,4-D
D 3	0.089	0.164	d 3	0.089 R-11 +0.164 2,4-D
D 4	0.89	1.64	d 4	0.89 R-11 + 1.64 2,4-D

Delta Sampling in 2008 (POD samples)

In vivo Estrogenic Activities of 2008 POD samples

Sample	In vivo EEQs (ng/L)
340	0.90 ± 0.03
405	25.65 ± 4.01
508	bdl
602	1.05 ± 0.10
711	12.79 ± 1.65
815	0.80 ± 0.12
902	bdl
915	2.02 ± 0.32

In vitro Vitellogenin induction of APEOs' plus selected pesticides (POD Samples)

		Code		
	River water	Cell Cond	centraion	
Pesticide	concentration	P1 (1x)	P5 (5x)	
Bifenthrin	1 ng/L	24 ng/L	119 ng/L	
Diuron	41 ng/L	972 ng/L	4862 ng/L	

		Code			
	River water	Cell Conc	entraion		
APEO	concentration	A1 (1x)	A5 (5x)		
NP	90 ng/L	2.134 ug/L	10.672 ug/L		
NPEOs	606 ng/L	14.372 ug/L	71.858 ug/L		
OP	13 ng/L	308 ng/L	1.542 ug/L		
OPEOs	84 ng/L	1.992 ug/L	9.960 ug/L		

SYNTHETIC PYRETHROIDS

- Neurotoxicant
- OP substitutes
- Extensively used in agriculture and urban/household insect control
 - 40% of all registered insecticide products
 - Use in CA has nearly tripled in the last decade
 - 1.4M lbs total sales in 2004
 - 550k lbs (for PM in 2006; 30% agric.; 60% commercial; 10% household)
- Highly hydrophobic
- Broad-spectrum insecticides
- Low mammalian and avian toxicity
- Highly toxic to aquatic organisms
- EDC

CHIRALITY IN SYNTHETIC PYRETHROIDS

- Chiral
- Structural derivative of natural pyrethrins
- Conforms to a single SAR for insecticidal activity based on the shape of the 3-D configuration
- Activity results from the appropriate fit of the entire molecule at the site of action

THE SAME BUT NOT THE SAME ENANTIOSELECTIVE NON-TARGET ACUTE TOXICITY

		D. pulex ²	D. mc	ngna ³	С. а	dubia ³
cis-Bifenthrin	Selectivity ratio ¹	14.0	22	.0	18.0	
	Active enantiomer	(-)	IR-	-cis	1R-cis	
Permethrin	Selectivity ratio ¹	-	>15.5	>19.5	>38.5	>30.5
	Active	N.D.4	1R-cis	1R-	1R-cis	1R-trans
	enantiomer			trans		
Cypermethrin	Selectivity ratio ¹	-	-		>10	>8
	Active	N.D.4	N.I	D.4	1R-cis-	1R-trans-
	enantiomer				αS	as
Cyfluthrin	Selectivity ratio ¹	-	-		>96	>47
	Active	N.D.4	N.I	D. ⁴	1R-cis-	1R-trans-
	enantiomer				αS	as

¹Selectivity ratio is the ratio of the LC50 (or TLM) of less active enantiomer(s) to that of the active enantiomer(s); ²[44]; ³[11] ; ⁴N.D. (no data)

ESTROGENIC ACTIVITY AND PYRETHROIDS

1S-cis-BF is 123 times more active than 1R-cis-BF

Enantioselectivity in in vivo vitellogenin induction in adult male Japanese medaka (ELISA Assay)

ESTROGENIC ACTIVITY AND PYRETHROID BIOTRANSFORMATION

ENANTIOSELECTIVE ESTROGENIC ACTIVITY IN PYRETHROIDS

	Activity in Yeast Screens			
Chemical structure and name	Estrogenic	Anti-estrogenic	Androgenic	Anti-androgenic
CI CI H H H H H H H H	+ LOEC 3.1±0.4x10 ⁻⁴ M EC50 2x10 ⁻³ M	-	-	+ LOIC 3±0.57x10 ⁻⁵ M IC50 7.3±1.4x10 ⁻⁴ M
HO HH JO 3-Phenoxybenzyl alcohol	÷ LOEC 3.2±0.58x10 ⁻⁶ M EC50 2x10 ⁻⁵ M	-	1	+ LOIC 3.5±0.5x10 ⁻⁶ M IC50 3.67±0.67x10 ⁻⁵ M
HO C C C C C C C C C C C C C C C C C C C	-	+ LOIC 1.25±0.7x10 ⁻⁵ M IC50 6.5±2.5x10 ⁻⁵ M		-
CI CI H H H_3C CH_3 H_3C CH_3 H_3C CH_3	-	+ LOIC 6±4x10 ⁻⁵ M IC50 6.5±3.5x10 ⁻⁴ M	-	-

(Tyler et al., 2000, Environ Toxicol Chem, 19: 801-809)

Relative estrogenic potencies of pyrethroid parent compounds and degradation products:

Pyrethroid metabolite	Estrogenic activity (EC ₅₀ / μΜ)	Relative potrency (estradiol = 1)
3-phenoxybenzyl alcohol	6.67 ± 3.11	5 x 10 ^{- 5}
3-phenoxybenzaldehyde	4.8 ± 3.42	7 x 10 ^{- 5}
3-phenoxybenzoic acid	NA	-
3-(4-hydroxy-3-phenoxy)- benzyl alcohol	6.75 ± 2.28	5 x 10 ^{- 5}
3-(4-hydroxy-3-phenoxy)- benzoic acid	NA	-
N-3-(phenoxybenzoyl)glycine	NA	-

⁽McCarthy et al., 2006, J. Environ. Monit., 8: 197-202)

ENANTIOSELECTIVE ESTROGENIC ACTIVITY

- permethrin (In vivo; Japanese medaka ELISA)

Values indicate mean \pm SD; Treatment concentration = 10 ug/L; n = 3; positive control (E2) induction = 8.1 x 10³ \pm 3.3 x 10³ ng Vtg/mg protein; E2 concentration = 0.10 µg/L); * Indicate significant difference from control (*P*<0.05); ** (*P*<0.1).

ENANTIOSELECTIVE ESTROGENIC ACTIVITY

- permethrin (In vitro; primary hepatocytes)

Values indicate mean \pm SEM. Enantiomer concentration = 46 uM. Positive control (E2) concentration = 3.6 x 10⁻³ uM; solvent (acetone). Treatments between enantiomers that share the same letter are not significantly different (P > 0.05). * Indicate significant difference from solvent control (P < 0.05).

BIOACTIVATION TO ESTROGENIC METABOLITES

Values indicate mean \pm SEM. Positive control (E2) concentration = 3.6 x 10⁻² μ M; solvent (acetone). * Indicate significant difference from solvent control (p < 0.01).

Permethrin - Enantioselective Biotransformation

LC/MS TOF trace with accurate mass and molecular formula of major metabolite from *1S-cis*-permethrin metabolism in trout liver microsome. The most probable structure of metabolite is indicated. (Note: LC/MS trace and mass prectra of metabolite from *1S-trans*-permethrin metabolism is identical to the figure shown here).

STEREOSELECTIVE BIOACTIVATION TO ESTROGENIC METABOLITES

Biotransformation pathway of permethrin in fish

STEREOSELECTIVE BIOACTIVATION TO ESTROGENIC METABOLITES

NO INHIBITOR

KETOCONAZOLE INHIBITION

SUMMARY

• *In vivo* and *in vitro* evaluation in fish indicate stereoselective estrogenic activity of permethrin.

• The 1S-cis-PM was more estrogenic than the 1R-cis enantiomer. Similar trends have been observed in *trans*-PM enantiomers.

• PM biotransformation in trout liver microsome is more oxidative than hydrolytic.

• *trans*-PM was more susceptible to ester cleavage than *cis*-PM. *1Strans*-PM was hydrolyzed more extensively than the *1R*-*trans* enantiomer.

SUMMARY

•*cis*-PM was more susceptible to hydroxylation than *trans*-PM. *1S-cis*-PM was hydroxylated more extensively than *1R-cis*-PM.

• Respective inhibition studies with ketoconazole confirmed that permethrin enantiomer hydroxylation is CYP-catalyzed.

• Results highlights the potential for target-inactive enantiomer(s) of chiral bioactive compounds to produce unintended effects in non-target species.

Delta Conclusions

- Individual sites carry unique TIE estrogenic signatures.
- Estrogenic activity was consistently observed in water extracts and whole water from surface waters.
- While several pesticides and surfactants were observed in fractions with estrogenic activity, reconstitution to environmental concentrations failed to demonstrate estrogenic activities observed in extracts or whole water exposures.

Delta Conclusions Cont

- Additional "unknown" estrogenic chemicals are likely sources of estrogenic activity particularly in systems receiving agricultural effluents/runoff.
- Greater than additive responses were observed in surfactant/herbicide, but in high surfactant concentrations.

Questions??

