Monitoring Multiple HAB toxins at the Land-Sea Interface in Coastal California

Meredith Howard

Southern California Coastal Water Research Project

Far-Reaching Effects of Freshwater Toxins to Marine Waters

OPEN O ACCESS Freely available online

Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters

Melissa A. Miller^{1,2}*, Raphael M. Kudela², Abdu Mekebri³, Dave Crane³, Stori C. Oates¹, M. Timothy Tinker⁴, Michelle Staedler⁵, Woutrina A. Miller⁶, Sharon Toy-Choutka¹, Clare Dominik⁷, Dane Hardin⁷, Gregg Langlois⁸, Michael Murray⁵, Kim Ward⁹, David A. Jessup¹

Detection of persistent microcystin toxins at the land-sea interface in Monterey Bay, California

Corinne M. Gibble*, Raphael M. Kudela

Ocean Sciences Department, 1156 High Street, University of California, Santa Cruz, CA 95064, USA

Microcystins are **persistent in the major watersheds** that flow into the ocean in Monterey Bay (Gibble and Kudela, 2014)

- Multiple cyanotoxins detected simultaneously in many systems (Tatters et al., 2017, Howard et al., 2017)
- Cyanobacteria dominate community composition in estuarine systems in Southern California (Tatters et al., 2017; Howard et al., 2017)

Freshwater Toxins Detected in Marine Shellfish

Blurred lines: Multiple freshwater and marine algal toxins at the land-sea interface of San Francisco Bay, California Melissa B. Peacock ^{a, b, c} A A, Corinne M. Gibble ^{b, d}, David B. Senn ^d, James E. Cloem ^e, Raphael M. Kudela ^b

Show more

San Francisco Bay Shellfish Are Loaded With Toxins, Study Finds

Evidence of freshwater algal toxins in marine shellfish: Implications for human and aquatic health

A man fishes at Baker Beach in San Francisco, with the Golden Gate Bridge in the b

Corinne M. Gibble^{a,*}, Melissa B. Peacock^{a,b,c}, Raphael M. Kudela^a

^a Ocean Sciences Department, 1156 High Street, University of California, Santa Cruz, CA 95064, USA

^b San Francisco Estuary Institute, 4911 Central Avenue, Richmond Ca 94804, USA

^c Native Environmental Science, Northwest Indian College, 2522 Kwina Rd, Bellingham, Wa, 98226, USA

MONITORING MULTIPLE HAB TOXINS AT THE LAND-SEA INTERFACE IN COASTAL CALIFORNIA

<u>Meredith D.A. Howard</u>¹, David Caron², Raphael Kudela³, Keith Loftin⁴, Avery Tatters², Kendra Hayashi³, Jayme Smith², Ariel Donovan⁴, Zachary Laughrey⁴, Carey Nagoda⁵, Betty Fetscher⁵, Suzanne Fluharty⁶, Richard Fadness⁷ Jeff Crooks⁸, Justin McCullough⁸, Monica Almeida⁸

¹Southern California Coastal Water Research Project, Costa Mesa, CA
²University of Southern California, Los Angeles, CA
³University of California, Santa Cruz, Santa Cruz, CA
⁴U.S. Geological Survey, Lawrence, KS
⁵San Diego Regional Water Quality Control Board, San Diego, CA
⁶Yurok Tribe, Klamath, CA
⁷North Coast Regional Water Quality Control Board, Santa Rosa, CA

Klamath River Estuary

Klamath Qcean Site

Klamath Estuary Site 2

Klamath Estuary Site 1 🖓

San Francisco Bay

Santa Cruz Wharf

California

Tijuana Estuary 2 💡

Tijuana Estuary 1

Santa Clara Estuary

Los Angeles River

Los Penasquitos Lagoon

Tijuana River Estuary

Challenges of Monitoring at the Land-Sea Interface **1. Ephemeral pulses of toxin** – New monitoring tools and approaches

2. Physical challenges: Adaptive approaches

Solid Phase Adsorption Toxin Tracking

- Passive Sampler that is time-integrative
- Continuous toxin detection to capture ephemeral events
- Applicable in all waterbody types and for many different toxins
- Low cost, simple and easy to deploy/recover
- Not applicable to health advisory thresholds (ng/g)
- Only measures dissolved toxins not total toxins

Physical Challenges

SPATT Housing

Picture: Keith Bouma-Gregson

Cyanotoxin Prevalence Underestimated From Grab Samples

% of Wetlands Sites Microcystins Detected

Grab Samples	29%
SPATT Samples	83%

Howard et al., 2017; Kudela, 2017, Kudela 2011

Each Sample Type Contributes a Different Piece of the Toxin Story

Nodularin

Grab Sample Results

		Nodula	rin				
(Campground	•	0	0		0 0	
	Outlet	0	0	0	0	0	
	Big Bend-	0	0	0	0	0	
	Redway-	0	0	0	0	0	
ite	Hopland-	0	0	0	0	0	
	Airport-	-	0	0	0	0	
S	Jimtown-	•	•	0	0	0	
	Pull Out-			0	0	0	
	Riverfront-	0	0				
	Odd Fellow			0	0	0	
	Vacation		0	0	0	0	
	Patterson	0					
		Jul 15	Aug 01	Aug 15	Sep 0	1 Sep 15	Oct 01
				20	10		
				20	No	dularin (u	g/L)
				20	Nc o	odularin (u <0.01	g/L)
		_		20	Nc 0	o <mark>dularin (</mark> u <0.01 0.01 - 0.04	ig/L)
				20	Nc 0	odularin (u <0.01 0.01 - 0.04	ıg/L)
				20	Na 0	odularin (u <0.01 0.01 - 0.04 0.04 - 0.06	g/L)
				20		odularin (u <0.01 0.01 - 0.04 0.04 - 0.06 0 >0.06	g/L)
				20	Nc 0	odularin (u <0.01 0.01 - 0.04 0.04 - 0.06 >0.06	g/L)
				20		odularin (u <0.01 0.01 - 0.04 0.04 - 0.06 0 >0.06	ıg/L)

Sample Types	Nodularin
SPATT (ng g ⁻¹)	bd - 450
Water (µg L ⁻¹)	bd-0.06
Cyanobacterial Mats (µg L ⁻¹)	NA

SPATT Results

Chronic Low Levels of Dissolved Domoic Acid Throughout California Estuaries SPATT Results

Whole Water Grab Results

Howard, Kudela, Caron and Loftin, Unpublished Data

Microcystins Detected at Marine and Estuarine Coastal Sites

4-6

Whole Water Grab Results

- Nodularin detected at 2 sites
 - Chronic detection for 3 months at Los Penasquitos
- Anatoxin-a detected at 4 sites
- Cylindrospermopsin not detected

Microcystins Produced in Inland Reservoirs Transported Downstream

Redding

Est HERE Del orme Man

120

Microcystins detectable throughout river and estuary sites when maximum concentrations detected in reservoirs

Community Composition Results Indicate Toxin Originated Upstream

Droughts, Storms and Community Composition

- Relative abundance indicates 2017 was dominated by diatoms and dinoflagellates
 - Cyanobacteria frequently observed in 2015 and 2016
- Hydrology and weather impacts
 - 2015 and 2016 record drought years
 - 2017 record storms and precipitation

Russian and Eel Rivers Cyanotoxin Field Study

Monitoring Sites:

July – Oct 2016, sampling 2X per month

Cyanotoxins measured from 3 sample types:

- Whole water (particulate and dissolved)
- SPATT passive samplers (dissolved)
- Cyanobacterial mats (particulate)

Cyanotoxins measured using LC-MS or ELISA (microcystins, anatoxin, nodularin, saxitoxin, cylindrospermopsin)

Buoyancy of Cyanobacterial Mats Increases Downstream Dispersal

Rise and fall of toxic benthic freshwater cyanobacteria (*Anabaena* spp.) in the Eel river: Buoyancy and dispersal

Keith Bouma-Gregson^{a,*}, Mary E. Power^a, Myriam Bormans^{b,c}

- Release of floating clumps from mats that are able to maintain buoyancy
- Buoyancy mechanism increases downstream dispersal distances

Synergistic Stressors at the Land-Sea Interface: Simultaneous Detection of Multiple Toxins

Similar results in San Francisco Bay, San Diego, Riverside Lakes (Howard et al., 2017, Peacock et al., 2018)

Recreational and drinking water health thresholds are based on single toxin exposure....

What are the consequences of exposure to multiple toxins for human, wildlife and ecological health?

Final Thoughts and Conclusions

- Chronic low concentrations of dissolved toxins detected throughout CA
 - SPATT results reveal chronic issue that may have health implications not currently addressed in routine monitoring programs
- Simultaneous detection of multiple toxins in most coastal monitoring sites in California
 - We hypothesize that mixtures of toxins can act as multiple physiological stressors with unknown consequences
- Monitoring programs should include both marine and freshwater toxins at the land-sea interface
 - SPATT combined with traditional monitoring provides comprehensive insight into toxin dynamics

Acknowledgements

NOAA MERHAB (NA05NO54781228) California State Water Quality Control Board North Coast Regional Water Quality Control Board San Diego Regional Water Quality Control Board

National Estuarine Research Reserve