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ABSTRACT 

 

The fecal indicator bacteria (FIB, such as Enterococcus

differentiate human and animal fecal pollution

risk.  Host-associated genetic markers that allow for source identification have been developed, but 

agreed upon approach for integrating 

levels of agreement among markers into 

presence of human fecal contamination.  As a first step towards developing such an index, we provided ten

with a simulated dataset for 26 beaches where 

frequency of detection for two human-associated 

the markers. We then used the Delphi technique to establish consensus principles for 

used in ranking beaches with respect to human 

after three iterations of ranking and discussio

that are positive for human-associated

consistency between the markers should be used to weigh marker frequency; 

the least weight.  Using the expert’s consensus, a conceptual mathematical 

index that consistently and transparently quantif
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, such as Enterococcus) used to monitor recreational water quality do not 

fecal pollution, even though human fecal material represents a greater public health 

associated genetic markers that allow for source identification have been developed, but 

agreed upon approach for integrating multiple samples exhibiting different marker signal strengths and varying 

into an index that managers can use for prioritizing beaches with the greatest 

presence of human fecal contamination.  As a first step towards developing such an index, we provided ten

for 26 beaches where we systematically varied four factors: Enterococcus concentrations, 

associated markers, magnitude of the marker signal, and agreement between 

Delphi technique to establish consensus principles for how these factors should be 

with respect to human fecal contamination.  The experts' initial ranking varied widely, but 

of ranking and discussion, the experts converged on a consensus that: 1) frequency of samples 

associated markers is of primary importance in ranking beaches; 2) magnitude of and 

markers should be used to weigh marker frequency; and 3) general FIB data should receive 

Using the expert’s consensus, a conceptual mathematical algorithm is proposed 

consistently and transparently quantifies the relative probability of human fecal 

icrobial source identification, human fecal contamination, Delphi technique, pollution index
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used to monitor recreational water quality do not 

, even though human fecal material represents a greater public health 

associated genetic markers that allow for source identification have been developed, but there is no 

t marker signal strengths and varying 

an index that managers can use for prioritizing beaches with the greatest 

presence of human fecal contamination.  As a first step towards developing such an index, we provided ten experts 

Enterococcus concentrations, 

marker signal, and agreement between 

ow these factors should be 

The experts' initial ranking varied widely, but 

1) frequency of samples 

markers is of primary importance in ranking beaches; 2) magnitude of and 

and 3) general FIB data should receive 

algorithm is proposed to establish an 

fecal contamination at a 

pollution index, weight-
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1.0 INTRODUCTION 

 

Recreational water quality is routinely monitored for 

fecal indicator bacteria (FIB), such as Enterococcus 

spp. and E. coli, as proxies for fecal contamination 

because they can be measured cheaper and faster than 

pathogens. Water bodies with FIB concentrations 

exceeding recreational water quality criteria (U.S. EPA 

2012) are treated as a public health risk and 

management actions such as beach advisories and 

pollution remediation are typically implemented in 

response.  However, FIB do not distinguish whether 

fecal contamination originates from human, animal or 

non-fecal sources. Human fecal material is considered 

a greater public health risk than non-human fecal 

material (Soller et al., 2010) and it is desirable to 

prioritize sites for remediation based on the extent of 

human fecal contamination.  The U.S. Environmental 

Protection Agency has even defined a quantitative 

microbial risk assessment (QMRA) process for 

developing alternative management strategies for 

beaches that have high FIB counts, but a low level of 

human fecal contamination (U.S. EPA 2012). 

 

Many host-associated genetic markers that allow for 

fecal source identification have been developed over 

the last decade and recent method evaluation studies 

have demonstrated good sensitivity and specificity of 

these markers to their target hosts (Boehm et al., 2013, 

Shanks et al., 2010)). Studies have also illustrated how 

these marker assays can be used in combination with 

probabilistic approaches to detect a host-specific fecal 

contamination event in a particular water sample 

(Jenkins et al., 2009, Kildare et al., 2007, Lamendella 

et al., 2009, Ryu et al., 2012). Using host-associated 

marker and general fecal indicator measurement data 

allow estimation of contribution to total fecal pollution 

from different hosts (Stoeckel et al., 2011, Wang et al., 

2010). 

 

However, managers still lack an index that enables 

them to prioritize which beaches have the highest level 

of human fecal contamination. Establishing such a 

human fecal contamination index requires integration 

and prioritization of several factors, including 

frequency of human-associated MST marker detection, 

magnitude of the human-associated MST marker 

signal, consistency among MST markers when multiple 

markers are employed, and FIB (Enterococcus) 

concentration.  These factors typically vary among the 

many samples collected to characterize conditions at a 

beach and mechanisms to facilitate appropriate 

incorporation of these factors are a prerequisite to such 

an index.   

 

To begin the process of developing a human fecal 

contamination index for beaches, we used the Delphi 

technique (Linstone and Turoff 1975) to identify how 

experts in the field prioritize these factors. In this 

exercise, experts were provided a simulated dataset of 

26 beaches where Enterococcus concentrations, 

frequency of detection for two human-associated MST 

markers, magnitude of the marker signal, and 

consistency between the two markers were 

systematically varied among beaches. The experts were 

not informed of the systematic variation, and the goal 

was to identify sources of variability among experts in 

weighting these factors, discuss these differences, and 

use this information for arriving at consensus principles 

that can form the basis for establishing a human fecal 

contamination index.   

 

2.0 METHODS 
 

2.1 The simulation design and ranking exercise 
 

The simulated data set consisted of 22 scenarios (22 

beaches each containing 20 samples) in which one of 

the four factors was varied while the other three were 

held constant (Table 1). Enterococcus concentrations 

were varied among the scenarios such that frequency 

and severity of violation of California's single-sample 

standard of 104 Enterococcus per 100ml (U.S. EPA 

1986) decreases from Enterococcus concentration 

categories A, to B, and to C, with specific 

concentration values randomly generated from the 

corresponding concentration ranges (Table 1). Two 

human-associated MST markers ((Haugland et al., 

2010) and (Shanks et al., 2009)) were included in the 

data set, and marker concentrations were placed into 

one of four ranges: not detected (ND), detected but 

below limit of quantification (BLOQ), barely above 

lower limit of quantification (Low), and two to four 

orders of magnitude above lower limit of quantification 

(High), with specific values randomly generated within 

these ranges.  The frequency of marker detection 

among samples in different scenarios was varied 

among 10%, 30%, and 50%.  In addition, four scenario 

replicates were included to assess each expert's internal 

consistency in ranking the beaches (producing a total 

of 26 beach scenarios in the simulated dataset).  The 

scenario replicates had different randomly generated 

concentration values, but included the same number of 

samples in each of the concentration and frequency 

ranges described above. Ten water quality experts were 

asked to rank the 26 beaches from 1 (the most 

contaminated) to 26 (the least contaminated) with 

respect to the relative level of human fecal 

contamination.  
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The experts were chosen to represent research 

scientists and water quality managers from the federal 

government, a public research agency, academic 

institutions, and a wastewater treatment agency.  The 

consensus-building exercise was conducted repeatedly 

until expert opinions converged.  In the first iteration, 

the experts were asked to provide their rankings 

independently of each other.  In the second iteration, 

the experts were allowed to confer, discuss differences 

in their initial rankings and work towards development 

of consensus principles before again providing their 

independent rankings. In the third iteration, the experts 

were again assembled to further identify the principles 

on which they agreed and on which they differed, to 

improve upon the degree of consensus attained in the 

second iteration. 

 
Table 1: Scenario design of the simulated data set.  

Beach ID
a 

Enterococcus
b 

Magnitude
c 

Frequency
d Consistency 

d  

(marker1 - marker2) 

1 A High 10% High - ND 

2 A High 10% High - BLOQ 

3 A High 10% High - High 

4 A High 30% High - ND 

5 A Low 30% Low - ND 

6 A Low 30% Low - Low 

7 A BLOQ 50% BLOQ - ND 

8 A BLOQ 50% BLOQ - BLOQ 

9 B High 10% High - ND 

10 B High 10% High - High 

11 B High 30% High - ND 

12 B Low 30% Low - ND 

13 B BLOQ 50% BLOQ - ND 

14 B BLOQ 50% BLOQ - BLOQ 

15 C High 10% High - ND 

16 C High 10% High - High 

17 C High 30% High - ND 

18 C Low 30% Low - ND 

19 C BLOQ 50% BLOQ - ND 

20 C BLOQ 50% BLOQ - BLOQ 

21 A High 30% High - High 

22 C BLOQ 10% BLOQ - ND 

23 A High 10% High - High 

24 A BLOQ 50% BLOQ - BLOQ 

25 B High 10% High - High 

26 B Low 30% Low - ND 
a Scenario replications: Beaches 23, 24, 25, and 26 were identical to beaches 3, 8, 10, and 12, respectively. 
b Enterococcus concentrations: Frequency and severity of violation of the Enterococcus standard (104 cell/100ml) varied in a 

descending order from A: 30% (500-1000) + 70% (2-103), to B: 10% (500-1000) + 90% (2-103), to C: 50% (50-110) + 50% (2-

10).  For example, a beach with "A" Enterococcus would have 30% of the samples having Enterococcus concentrations between 

500 and 1000 cell/100ml and 70% of the samples between 2 and 103 cell/100ml. Each data point was generated as a random 

number within the specified ranges.  
c Marker concentrations: Each data point was generated as a random number within the specified ranges: High, Low, BLOQ 

(below limits of quantification), and ND (non-detectable) with the specified ranges being 105-107, 1500-2000, 400-500, and 0 

copy/100ml, respectively. 
d Frequency: Frequency of any detection (High, Low, BLOQ) of marker 1. Concentration and frequency of marker 2 was dictated 

by the specified "consistency" between markers 1 and 2.  
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2.2 Analysis of rankings 
 

The internal consistency of the rankings by each expert 

was assessed by comparing their rankings for the 

paired beaches representing the same scenarios.  If a 

pair of replicate beaches were assigned the same rank 

(for the few experts who assigned ties) or had ranks 

immediately below or above each other, the expert was 

considered to exhibit perfect internal consistency. 

Agreement among experts was evaluated by Spearman 

pair-wise correlation analysis of ranks.  The 26 beaches 

were organized into groups such that within each group 

only one of the four factors (Table 1) was varied. 

Ranks for beaches within each group were then 

compared to reveal how variations in each factor 

influenced ranking of the beaches by the experts. All 

statistical analyses were conducted in R (R Core 

Development Team 2011). 
 

3.0 RESULTS 
 

3.1 Internal consistency of ranking among replicates 
 

Internal consistency in ranking the beaches by the 

water quality experts was high (Table 2). Five experts 

(A, C, D, I, and J) and six experts (A, C, D, E, I, and J) 

exhibited perfect internal consistency for their rankings 

in iterations 1 and 2, respectively.  Among the 80 

possible pairings of duplicate beaches ranked by the 

experts in two iterations, 18 pairs (11 and 7 pairs for 

iterations 1 and 2, respectively) of duplicate beaches 

received identical ranking, while 43 pairs (20 and 23 

pairs for iterations 1 and 2, respectively) were one rank 

apart (Table 2).  
 

3.2 Overall agreement among experts 
 

Overall agreement on beach ranking among the experts 

initially varied greatly, but increased from iteration 1 to 

iteration 2 (Fig. 1). The pair-wise correlation 

coefficients of the beach rankings among the experts 

ranged from -0.33 to 0.98 (average of 0.41) and from -

0.14 to 0.98 (average of 0.47) for iterations 1 and 2, 

respectively.  

 

3.3 Enterococcus CFU concentration 

 

There was wide divergence among the experts 

regarding how Enterococcus information was used for 

beach ranking in iterations 1 and 2.  Some experts 

completely disregarded Enterococcus concentration 

and used only the human-associated MST marker 

results for their rankings, while other experts used 

Enterococcus violations as the most important factor in 

their ranking.  A few experts considered Enterococcus 

and human-associated marker information together, but 

usually assigned larger weights to human-associated 

marker data.  

 

A comparison of the rankings for three beaches 

(beaches 3, 10, and 16) illustrates the different 

approaches in using Enterococcus data (Fig. 2). These 

three beaches had the highest concentrations for both 

human-associated MST markers in 10% of samples, 

but differed in their extent of Enterococcus violations, 

with beach 3 experiencing the most, beach 10 

intermediate, and beach 16 the least enterococci 

pollution.  In the first iteration (left panel, Fig. 2), 

experts B, C, H viewed Enterococcus as the most 

important factor, resulting in large rank differences 

between beaches 3 and 16 (the long vertical grey lines 

in Fig. 2), whereas in the second iteration experts C 

and H provided much closer rankings (shorter lines, 

right panel, Fig. 2). By contrast, rankings of expert G 

were unaffected by the Enterococcus in both iterations 

(short lines, both panels, Fig. 2).  

 

Table 2: Expert ranking of the four pairs of duplicate beaches.  

Pairs of 

duplicate 

beaches
a 

Iteration 1 Iteration 2 

Pair#1 Pair#2 Pair#3 Pair#4 Pair#1 Pair#2 Pair#3 Pair#4 

Expert A 3 4 20 21 5 6 16 17 6 7 3 2 8 9 23 24 

Expert B 3 4 15 17 5 6 13 12 2 3 12 19 5 4 15 17 

Expert C 9 8 1 2 17 18 15 16 18 17 1 2 20 21 13 14 

Expert D 5 5 19 19 5 5 16 16 3 3 6 6 8 8 15 15 

Expert E 2 2 9 9 5 5 19 17 3 3 16 17 7 7 11 11 

Expert F 15 12 2 1 16 13 9 10 18 19 4 1 21 22 13 15 

Expert G 18 22 11 14 20 23 8 7 20 22 3 2 19 21 13 15 

Expert H 9 11 3 4 8 10 17 18 14 16 2 1 13 15 10 12 

Expert I 17 18 2 1 19 20 16 15 16 17 1 2 18 19 10 9 

Expert J 3 3 8 8 5 5 20 20 14 15 2 1 17 16 11 12 
a Pairs#1 to #4 refer to the four pairs of duplicate beaches (Beaches 3 and 23, 8 and 24, 10 and 25, 12 and 26) representing 

identical scenarios as described in Table 1. 
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Figure 1: Correlation coefficients of ranks between each pair of experts (y-axis) vs. experts (Experts A to J; x-axis).  
Each colored circle (jittered to display potential overlapping points) represents one correlation coefficient in iterations 1 (yellow 

circles) or 2 (blue circles). Two side-by-side boxplots with corresponding colors show the summary statistics of the correlation 

coefficients for iterations 1 (yellow) and 2 (blue). On the boxplots, the central lines indicate median, ends of boxes (i.e., “hinges”) 

indicate 1st and 3rd quartiles, extended lines indicate values within 1.5 times IQR (inter-quartile range) of the hinges, and black 

dots indicate extreme values.  The relative long length of boxes indicates high variability in experts’ rankings. The increase of 

medians from iterations 1 to 2 (i.e., blue central lines above yellow central lines) for most experts indicates improved general 

agreement among experts.  

 
Subsequent discussion as part of iteration 3 led the 

experts to agree on two points with respect to 

Enterococcus standard violation.  First, Enterococcus 

geometric mean concentrations for a site were more 

important to ranking than the concentration from 

individual samples.  The second point of agreement 

was that the Enterococcus concentration should have 

much less effect on the rankings than human-associated 

marker data since Enterococcus is not specific to 

human fecal sources.  
 

3.4 Human-associated MST markers: Frequency of 

detection, magnitude of signals, and consistency 

between MST methods 
 

When other factors were held constant, higher 

frequency of marker detection resulted in a beach being 

ranked as more contaminated unanimously across all 

experts in both iterations 1 and 2.  However initially, 

there was a big difference among experts in how 

strongly marker detection frequency influenced 

individual beach ranking. For beaches 3 (10% 

frequency) and 21 (30% frequency), the level of 

perceived increase in contamination depended on the 

expert (Fig. 3). For example, in iteration 1 (left panel, 

Fig. 3) expert G ranked the beach with 30% marker 

detection (beach 21) a total of 17 positions higher than 

the beach with only 10% frequency (beach 3), whereas 

expert E produced immediately adjacent ranks for these 

same two beaches. After discussion, 7 out of 10 experts 

gave beach 3 a less contaminated ranking in iteration 2 

as compared to in iteration 1 (Fig. 3), and the average 

rank differences between these two beaches also 

increased from 6.1 to 7.9 ranks (while medians 

increased from 4.5 to 9.5 ranks), indicating frequency 

influenced ranking more strongly in iteration 2 than in 

iteration 1. Further consensus building (iteration 3) led 

to the expert’s conclusion that higher frequency of 

detection was the key criterion for beach ranking.  
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Figure 2: Enterococcus effect on beach ranking: Ranks (y-axis) provided by the experts (x-axis: experts A to J for 

iterations 1 and 2 on left and right panels, respectively) for beaches (3, 10, and 16) that only differed in extent of 

Enterococcus standard violations (denoted by "A", "B", "C" as defined in Table 1).   
All three beaches had both human markers within the "High" magnitude range (105-107 copy/100 mL) in 10% of the samples. A 

higher rank (i.e. smaller number and higher position on the y-axis) indicates that the beach was regarded as more contaminated 

with human fecal sources. The difference in ranking the beaches is highlighted by the length of the grey line connecting the 

beaches for each expert: The further apart the ranks are, the more influence Enterococcus had on experts' ranking.  

 

Similar to human-associated MST marker frequency, 

higher marker concentrations resulted in a beach being 

ranked as more contaminated unanimously across all 

experts in both iterations 1 and 2.  However, there was 

a big difference among experts in how strongly 

magnitude affected beach ranking as well.  For beaches 

6 and 21, an increase of magnitude from Low to High 

always resulted in a more contaminated ranking by all 

experts, but the level of the ranking increase ranged 

from 1 to 13 positions, depending on the expert.  For 

example, in iteration 1 (left panel, Fig. 4) expert D 

ranked the beach with High marker concentration 13 

ranks higher than the beach with Low marker 

concentration, whereas majority of the experts (experts 

A, B, C, E, F, H, I, and J) produced immediately 

adjacent ranks for these two beaches.  Consequently, 

median rank differences between these two beaches 

(differing by marker magnitude only) were only one 

rank in both iterations.   

 

The experts disagreed on how to use consistency 

between human-associated MST markers for ranking.  

Some experts used the two human-associated MST 

markers together to assess the extent of contamination 

in each sample before integration across samples for 

ranking the beaches.  Other experts treated the two 

human-associated MST markers for each sample as if 

they were two independent samples.  However, the 

commonality between the two approaches and among 

the experts was that detection of both markers carried 

more weight than detection of just one marker.  For 

example, beaches 1, 2, and 3 only differed in 

consistency between markers while all other factors 

were fixed, and an increased consistency between 

markers (i.e. High-ND [beach 1], to High-BLOQ 

[beach 2], to High-High [beach 3]) resulted in a more 

contaminated ranking by most experts in both iterations 

(Fig. 5).  
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Figure 3: Frequency effect on beach ranking: Ranks (y-axis) provided by the experts (x-axis: experts A to J for 

iterations 1 and 2 on left and right panels, respectively) for beaches 3 (10%) and 21 (30%) that differed only in 

frequency of human marker detection (denoted by different symbols).   
Both beaches had both marker concentrations within the "High" magnitude range (105-107 copy/100 mL) and Enterococcus 

concentrations within the range "A,"", but either 10% or 30% frequency of marker detection.  A higher rank (i.e. smaller number 

and higher on the y-axis) indicates that the beach was regarded as more contaminated with human fecal sources. The difference 

in ranking the beaches is highlighted by the length of the grey line connecting the beaches for each expert: The further apart the 

ranks are, the more influence frequency had on experts' ranking. 

 

 
Figure 4: Magnitude effect on beach ranking: Ranks (y-axis) provided by the experts (x-axis: experts A to J for 

iterations 1 and 2 on left and right panels, respectively) for beaches 6 (Low-Low) and 21(High-High) that differed 

only in magnitude of human marker concentrations (denoted by different symbols).   
Both beaches had both markers detected in 30% of samples and Enterococcus concentrations within the range "A,"", but both 

marker concentrations were within either the "LLOQ" or "High" magnitude range.  A higher rank (i.e. smaller number and higher 

on the y-axis) indicates that the beach was regarded as more contaminated with human fecal sources. The difference in ranking 

the beaches is highlighted by the length of the grey line connecting the beaches for each expert: The further apart the ranks are, 

the more influence magnitude had on experts' ranking. 

 



Towards Establishing a Human Fecal Contamination Index in Microbial Source Tracking/ IJESER (2013) Vol 4(3)46-58 

International Journal of Environmental Science and Engineering Research (IJESER)                                                               53 

 

 
Figure 5: Effect of consistency between markers on beach ranking: Ranks (y-axis) provided by the experts (x-axis: 

experts A to J for iterations 1 and 2 on left and right panels, respectively) for beaches (1, 2, and 3) that differed in 

consistency between human marker concentrations (denoted by different symbols).   
All three beaches had Enterococcus concentrations within range "A,"", 10% samples with "High" concentrations of the first 

marker but "ND" (beach 1), "BLOQ" (beach 2), or "High" (beach 3) ranges for concentrations of the second marker. A higher 

rank (i.e. smaller number and higher on the y-axis) indicates that the beach was regarded as more contaminated with human fecal 

sources. The difference in ranking the beaches is highlighted by the length of the grey line connecting the beaches for each 

expert: The further apart the ranks are, the more influence the factor "consistency between markers" had on experts' ranking. 

 
3.5 Human-associated MST markers: Frequency of 

detection compared to magnitude of signals; 

Frequency of detection compared to consistency 

between markers 
 

The highly variable, but unidirectional, effects that 

each of the three human marker factors exerted on 

beach ranking resulted from how differently experts 

weighed frequency, magnitude and consistency 

between markers.  In iteration 1, more than half of the 

experts placed more weight on magnitude than 

frequency (left panel, Fig. 6): Six experts ranked beach 

10 (10% samples with marker concentrations of High-

High) as more contaminated than beach 14 (50% 

samples with marker concentrations of BLOQ-BLOQ).  

In iteration 2, the majority of experts (7 of 10) ranked 

beach 10 (higher magnitude) as less contaminated than 

beach 14 (higher frequency;) (right panel, Fig. 6).  In 

subsequent discussions (iteration 3), the experts 

concluded that frequency of human-associated MST 

marker detection is more important than magnitude of, 

or consistency between, human markers.  

Regarding frequency vs. consistency, frequency was 

generally of more importance to the experts.  This can 

be seen in a comparison of beaches 2 (10% samples 

with marker concentrations of High-BLOQ) and 4 

(30% samples with marker concentrations of High-

ND), where 8 of 10 experts ranked beach 4 (higher 

frequency) as more contaminated in both iterations 

(Fig. 7).  Discussion among the experts in iteration 3 

confirmed their reliance on frequency of marker 

detection as more important than consistency between 

markers.   

 

4.0 DISCUSSION 

 

Three consensus principles were reached through this 

exercise.  First, the frequency of human-associated 

MST marker detection is the most important factor in 

ranking beaches for extent of human contamination 

because the management goal is to assess the typical 

condition at a beach, rather than the exceptional event.  

The elevation of marker frequency also stemmed from 

concern that magnitude is a less reliable line of 
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evidence, as laboratory steps such as water filtration 

and DNA isolation lead to approximately half a log 

unit of variability in estimated marker concentrations 

(Ebentier et al., 2013, Shanks et al., 2012).  Moreover, 

these markers may experience differential degradation 

and removal rates by predation/absorption compared to 

human pathogens (Walters et al., 2009).  As such, the 

experts placed higher confidence in presence/absence 

distinctions (i.e. frequency) than in precision of marker 

concentrations, consistent with Soule et al’s (2006) 

recommendation to base conclusions on positive 

events, rather than magnitude of individual sample 

measurements.  

 

The second principle is that magnitude and consistency 

between human-associated MST markers should also 

be considered, but used as secondary w eights to 

support the primary  factor of  frequency.  While  

human markers  are  relatively sensitive  and    specific,  

there are examples of cross-reaction or inhibition that 

can affect performance (Layton et al., In Press).  Thus, 

confidence in counting presence in estimating 

frequency is enhanced when confirmed by a second 

marker or by large magnitude in marker detections.  

 

The third principle is that Enterococcus concentration 

is of least importance in ranking beaches with regard to 

extent of human fecal contamination. The experts 

arrived at this principle because Enterococcus is not 

specific to human fecal contamination and is typically 

poorly correlated with presence of human pathogens 

(Harwood et al., 2005). The experts felt that 

Enterococcus concentration should be used for 

identifying that a beach is of sufficient concern to be 

selected for collection of human-associated marker 

data, but beyond that it should be only a minor 

modifier in a ranking process.   

 

 
Figure 6: Frequency vs. magnitude effect on beach ranking: Ranks (y-axis) provided by the experts (x-axis: experts 

A to J for iterations 1 and 2 on left and right panels, respectively) for beaches 10 (High-High) and 14 (BLOQ-

BLOQ) that had either lower frequency of high marker concentrations or higher frequency of lower marker 

concentrations.  
Both beaches had Enterococcus concentrations within range "B."".  A higher rank (i.e. smaller number and higher on the y-axis) 

indicates that the beach was regarded as more contaminated with human fecal sources. The difference in ranking the beaches is 

highlighted by the length of the grey line connecting the beaches for each expert: The direction and distance between the 

corresponding ranks indicated how the two factors (frequency vs. magnitude) were weighed against each other by the experts. 
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Figure 7: Frequency vs. consistency-between-markers effect on beach ranking: Ranks (y-axis) provided by the 

experts (x-axis: experts A to J for iterations 1 and 2 on left and right panels, respectively) for beaches 2 (High-

BLOQ) and 4 (High-ND) that had either lower frequency of high consistency between marker concentrations or 

higher frequency of lower consistency between marker concentrations.  
Both beaches had Enterococcus concentrations within range "A.”".  A higher rank (i.e. smaller number and higher on the y-axis) 

indicates that the beach was regarded as more contaminated with human fecal sources. The difference in ranking the beaches is 

highlighted by the length of the grey line connecting the beaches for each expert: The direction and distance between the 

corresponding ranks indicated how the two factors (frequency vs. consistency) were weighed against each other by the experts. 

 

While the experts agree on these general principles, the 

exercise revealed considerable variability in the 

experts’ application of these principles, suggesting the 

need for standardization of MST data interpretation.  

Delphi-based exercises (Hsu and Sandford, 2007) 

frequently find that the experts' professional 

backgrounds affect their values regarding scientific 

evidence, leading to high variability in data 

interpretation (Cormier et al., 2008).  For example, 

experts with beach management or water quality 

regulatory background placed heavier emphasis on 

Enterococcus standard violations because those are the 

data they work with most often, whereas experts from 

research institutes mainly utilized the human-

associated MST marker data for beach ranking.  This is 

consistent with the recognition that more quantitative 

approaches are needed to better define certainty 

elements in an open framework process (Chapman et 

al., 2002).  This also corresponds to efforts by 

U.S.EPA and other federal agencies to develop a 

highly quantifiable, transparent, and repeatable 

approach to decision-making frameworks in risk 

analysis and ecological risk assessment (Chapman 

2007, Linkov et al., 2009, Suter II and Cormier 2011). 

 

We propose that an algorithm based on the Bayesian 

approach, which has been previously used to determine 

if a particular detection represents a true positive 

"event" (Jenkins et al., 2009, Kildare et al., 2007, 

Lamendella et al., 2009, Ryu et al., 2012), can provide 

that consistency and transparency.  Such an algorithm 

includes three basic steps: 

1. Calculate a sample score, i.e. a weighted "event", 

using a Bayesian probabilistic model based on 

human-associated marker data and the markers' 

performance metrics (in the form of conditional 

probabilities). This would generate a sample score 

that represents the probability of human fecal 

presence in each sample.  

2. Calculate a site score that reflects an average 

condition of a site and has a unified range (e.g. 0-

100), from all sample scores. This site score serves 

as a human fecal contamination index for the extent 

of human fecal contamination at the site.  

3. Use the index for water quality management 

applications such as beach ranking.  A beach with a 

higher site score will be ranked as more 

contaminated with human fecal material than one 

with a lower site score.  

 

A mathematical algorithm such as this would provide 

many advantages over an expert-decision approach.  

First, the "weights" for the weighted-frequency 

consensus approach are mathematically defined as 

conditional probabilities that can be scientifically 

obtained via MST method evaluation studies.  Second, 
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such an algorithm provides standardization of MST 

data interpretation, which allows consistent data 

interpretation across sites and time, aids in 

reproducibility across laboratories, and provides a 

benchmark for the systematic comparison of source 

identification results.  Third, a mathematically defined 

model system will enable formal statistical analysis to 

assist in management decision-making

comparative index.  For example, one decision that 

managers often face relates to resource allocation: 

assess the extent of human contamination given limited 

resources and a particular management goal, should 

more samples be taken and analyzed for one MST 

marker or should more markers be run on fewer 

samples?  This question may be answered 

quantitatively by calculating which scenario (more 

samples compared to more markers) affords the more 

precise estimation of site scores (i.e. human fecal 

contamination index) by the algorithm (

 

Such an algorithm would also be applicable to other 

management decisions, such as determining if a beach 

has low enough human fecal contamination to be 

eligible for QMRA studies (Soller et al.,

algorithm enables construction of statistically based 

decision rules with a predetermined confidence level 

(Fig. 9).  Substituting other markers such as those for 

gulls or dogs, instead of human-associated 

markers, would also enable the algorithm to produce 

site scores based on the marker(s) of choice

dog fecal contamination indices). 
 

Figure 8: An example for using the algorithm to assist 

management decisions regarding resource allocation: 
more samples with each sample analyzed for one human

associated marker or fewer samples with each sample 

analyzed for two human-associated markers.  The solid

represents how variability in site score decreases as sample 

size increases. The dashed line represents how the site score 

difference between when one or two markers are analyzed 

changes as sample size increases.  This mock graph illustrates 

that resources are better spent to analyze more samples when 

the sample size is small. 
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such an algorithm provides standardization of MST 

data interpretation, which allows consistent data 

interpretation across sites and time, aids in 

aboratories, and provides a 

benchmark for the systematic comparison of source 

identification results.  Third, a mathematically defined 

model system will enable formal statistical analysis to 

making by providing a 

For example, one decision that 

managers often face relates to resource allocation: to 

assess the extent of human contamination given limited 

resources and a particular management goal, should 

more samples be taken and analyzed for one MST 

should more markers be run on fewer 

samples?  This question may be answered 

quantitatively by calculating which scenario (more 

more markers) affords the more 

i.e. human fecal 

the algorithm (Fig. 8).   

Such an algorithm would also be applicable to other 

determining if a beach 

has low enough human fecal contamination to be 

et al., 2010).  The 

algorithm enables construction of statistically based 

decision rules with a predetermined confidence level 

9).  Substituting other markers such as those for 

associated MST 

enable the algorithm to produce 

site scores based on the marker(s) of choice (i.e. gull or 

 
An example for using the algorithm to assist 

management decisions regarding resource allocation: 
more samples with each sample analyzed for one human-

associated marker or fewer samples with each sample 

associated markers.  The solid line 

represents how variability in site score decreases as sample 

size increases. The dashed line represents how the site score 

difference between when one or two markers are analyzed 

changes as sample size increases.  This mock graph illustrates 

ources are better spent to analyze more samples when 

Figure 9: An example of using site score in a 

distribution-based power analysis for determining if a 

beach has sufficiently low human contamination to be 

eligible for QMRA.  For the purpose of this mock graph: a 

Binomial distribution for the site score was assumed 

appropriate for the power analysis, a true site score < 10 was 

assumed to indicate sufficiently low human contamination, 

and simulation was run for observed site scor

0 to 5. Utilizing the power analysis, a decision curve can be 

constructed such that the area above the decision curve 

represents sufficient evidence for low human contamination.  

Multiple decision curves can be constructed to represent 

different degree of confidence (i.e. certainty in the graph) in 

the decision. 

 

5.0 CONCLUSIONS 

 

• The Delphi exercise using a simulated data set 

beaches revealed large variability in how water 

quality experts interpreted data from 

indicating the need for standardization

• Three iterative components of the 

identified consensus principles toward standardized 

MST data interpretation needed for developing a 

human fecal contamination index

samples that are positive for huma

markers is of primary importance; 

and consistency between human

should be used to weight MST marker frequency

and 3) general FIB data (e.g. Enterococcus

receive the least weight.  

• A mathematical algorithm based on 

approach could be used to quantitatively realize

consensus principles and produce 

could be used to rank beaches with respect to the 

degree of human fecal contamination

algorithm holds great promise conceptually, 

additional work is needed to further

validate, and demonstrate the algorithm for use by 

the water quality community. 
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An example of using site score in a 

based power analysis for determining if a 

beach has sufficiently low human contamination to be 

or the purpose of this mock graph: a 

Binomial distribution for the site score was assumed 

appropriate for the power analysis, a true site score < 10 was 

assumed to indicate sufficiently low human contamination, 

and simulation was run for observed site scores ranging from 

Utilizing the power analysis, a decision curve can be 

constructed such that the area above the decision curve 

represents sufficient evidence for low human contamination.  

Multiple decision curves can be constructed to represent 

erent degree of confidence (i.e. certainty in the graph) in 

exercise using a simulated data set of 26 

beaches revealed large variability in how water 

data from an MST study, 

for standardization. 

iterative components of the exercise 

identified consensus principles toward standardized 

needed for developing a 

human fecal contamination index: 1) frequency of 

positive for human-associated 

is of primary importance; 2) magnitude of 

and consistency between human-associated markers 

MST marker frequency; 

Enterococcus) should 

A mathematical algorithm based on a Bayesian 

quantitatively realize the 

and produce an index that 

be used to rank beaches with respect to the 

contamination.  While the 

great promise conceptually, 

to further develop, 

algorithm for use by 
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